Mandel.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360
  1. #include "Mandel.h"
  2. #include "Fixed.h"
  3. #include "CpuGenerators.h"
  4. #include "ClGenerators.h"
  5. #include "OpenClInternal.h"
  6. #include "OpenClCode.h"
  7. #include <asmjit/asmjit.h>
  8. #include <map>
  9. using mnd::MandelDevice;
  10. using mnd::MandelContext;
  11. using mnd::MandelGenerator;
  12. using mnd::AdaptiveGenerator;
  13. template<typename T, typename U>
  14. static std::map<U, T> invertMap(const std::map<T, U>& m)
  15. {
  16. std::map<U, T> res;
  17. std::transform(m.begin(), m.end(), std::inserter(res, res.end()), [](auto& pair) {
  18. return std::pair{ pair.second, pair.first };
  19. });
  20. return res;
  21. }
  22. static const std::map<mnd::GeneratorType, std::string> typeNames =
  23. {
  24. { mnd::GeneratorType::FLOAT, "float" },
  25. { mnd::GeneratorType::FLOAT_SSE2, "float SSE2" },
  26. { mnd::GeneratorType::FLOAT_AVX, "float AVX" },
  27. { mnd::GeneratorType::FLOAT_AVX_FMA, "float AVX+FMA" },
  28. { mnd::GeneratorType::FLOAT_AVX512, "float AVX512" },
  29. { mnd::GeneratorType::FLOAT_NEON, "float NEON" },
  30. { mnd::GeneratorType::DOUBLE_FLOAT, "double float" },
  31. { mnd::GeneratorType::DOUBLE, "double" },
  32. { mnd::GeneratorType::DOUBLE_SSE2, "double SSE2" },
  33. { mnd::GeneratorType::DOUBLE_AVX, "double AVX" },
  34. { mnd::GeneratorType::DOUBLE_AVX_FMA, "double AVX+FMA" },
  35. { mnd::GeneratorType::DOUBLE_AVX512, "double AVX512" },
  36. { mnd::GeneratorType::DOUBLE_NEON, "double NEON" },
  37. { mnd::GeneratorType::DOUBLE_DOUBLE, "double double" },
  38. { mnd::GeneratorType::DOUBLE_DOUBLE_AVX, "double double AVX" },
  39. { mnd::GeneratorType::DOUBLE_DOUBLE_AVX_FMA, "double double AVX+FMA" },
  40. { mnd::GeneratorType::QUAD_DOUBLE, "quad double" },
  41. { mnd::GeneratorType::FLOAT128, "float128" },
  42. { mnd::GeneratorType::FLOAT256, "float256" },
  43. { mnd::GeneratorType::FIXED64, "fixed64" },
  44. { mnd::GeneratorType::FIXED128, "fixed128" },
  45. { mnd::GeneratorType::FIXED512, "fixed512" },
  46. };
  47. static const std::map<std::string, mnd::GeneratorType> nameTypes = invertMap(typeNames);
  48. namespace mnd
  49. {
  50. const std::string& getGeneratorName(mnd::GeneratorType type)
  51. {
  52. return typeNames.at(type);
  53. }
  54. mnd::GeneratorType getTypeFromName(const std::string& name)
  55. {
  56. return nameTypes.at(name);
  57. }
  58. }
  59. MandelContext mnd::initializeContext(void)
  60. {
  61. return MandelContext();
  62. }
  63. MandelDevice::MandelDevice(mnd::ClDeviceWrapper device) :
  64. clDevice{ std::make_unique<ClDeviceWrapper>(std::move(device)) }
  65. {
  66. }
  67. mnd::MandelGenerator* MandelDevice::getGenerator(mnd::GeneratorType type) const
  68. {
  69. auto it = mandelGenerators.find(type);
  70. if (it != mandelGenerators.end())
  71. return it->second.get();
  72. else
  73. return nullptr;
  74. }
  75. std::vector<mnd::GeneratorType> MandelDevice::getSupportedTypes(void) const
  76. {
  77. std::vector<GeneratorType> types;
  78. for (auto& [type, gen] : mandelGenerators) {
  79. types.push_back(type);
  80. }
  81. return types;
  82. }
  83. MandelContext::MandelContext(void) :
  84. jitRuntime{ std::make_unique<asmjit::JitRuntime>() }
  85. {
  86. #if defined(__x86_64__) || defined(_M_X64) || defined(__i386) || defined(_M_IX86)
  87. if (cpuInfo.hasAvx512()) {
  88. auto fl = std::make_unique<CpuGenerator<float, mnd::X86_AVX_512, true>>();
  89. auto db = std::make_unique<CpuGenerator<double, mnd::X86_AVX_512, true>>();
  90. cpuGenerators.insert({ GeneratorType::FLOAT_AVX512, std::move(fl) });
  91. cpuGenerators.insert({ GeneratorType::DOUBLE_AVX512, std::move(db) });
  92. }
  93. if (cpuInfo.hasAvx()) {
  94. auto fl = std::make_unique<CpuGenerator<float, mnd::X86_AVX, true>>();
  95. auto db = std::make_unique<CpuGenerator<double, mnd::X86_AVX, true>>();
  96. auto ddb = std::make_unique<CpuGenerator<DoubleDouble, mnd::X86_AVX, true>>();
  97. cpuGenerators.insert({ GeneratorType::FLOAT_AVX, std::move(fl) });
  98. cpuGenerators.insert({ GeneratorType::DOUBLE_AVX, std::move(db) });
  99. cpuGenerators.insert({ GeneratorType::DOUBLE_DOUBLE_AVX, std::move(ddb) });
  100. if (cpuInfo.hasFma()) {
  101. auto favxfma = std::make_unique<CpuGenerator<float, mnd::X86_AVX_FMA, true>>();
  102. auto davxfma = std::make_unique<CpuGenerator<double, mnd::X86_AVX_FMA, true>>();
  103. auto ddavx = std::make_unique<CpuGenerator<DoubleDouble, mnd::X86_AVX_FMA, true>>();
  104. cpuGenerators.insert({ GeneratorType::FLOAT_AVX_FMA, std::move(favxfma) });
  105. cpuGenerators.insert({ GeneratorType::DOUBLE_AVX_FMA, std::move(davxfma) });
  106. cpuGenerators.insert({ GeneratorType::DOUBLE_DOUBLE_AVX_FMA, std::move(ddavx) });
  107. }
  108. }
  109. if (cpuInfo.hasSse2()) {
  110. auto fl = std::make_unique<CpuGenerator<float, mnd::X86_SSE2, true>>();
  111. auto db = std::make_unique<CpuGenerator<double, mnd::X86_SSE2, true>>();
  112. cpuGenerators.insert({ GeneratorType::FLOAT_SSE2, std::move(fl) });
  113. cpuGenerators.insert({ GeneratorType::DOUBLE_SSE2, std::move(db) });
  114. }
  115. #elif defined(__arm__) || defined(__aarch64__) || defined(_M_ARM)
  116. if (cpuInfo.hasNeon()) {
  117. auto fl = std::make_unique<CpuGenerator<float, mnd::ARM_NEON, true>>();
  118. auto db = std::make_unique<CpuGenerator<double, mnd::ARM_NEON, true>>();
  119. cpuGenerators.insert({ GeneratorType::FLOAT_NEON, std::move(fl) });
  120. cpuGenerators.insert({ GeneratorType::DOUBLE_NEON, std::move(db) });
  121. }
  122. #endif
  123. {
  124. auto fl = std::make_unique<CpuGenerator<float, mnd::NONE, true>>();
  125. auto db = std::make_unique<CpuGenerator<double, mnd::NONE, true>>();
  126. cpuGenerators.insert({ GeneratorType::FLOAT, std::move(fl) });
  127. cpuGenerators.insert({ GeneratorType::DOUBLE, std::move(db) });
  128. auto fx64 = std::make_unique<CpuGenerator<Fixed64, mnd::NONE, true>>();
  129. auto fx128 = std::make_unique<CpuGenerator<Fixed128, mnd::NONE, true>>();
  130. cpuGenerators.insert({ GeneratorType::FIXED64, std::move(fx64) });
  131. cpuGenerators.insert({ GeneratorType::FIXED128, std::move(fx128) });
  132. }
  133. #ifdef WITH_BOOST
  134. auto quad = std::make_unique<CpuGenerator<Float128, mnd::NONE, true>>();
  135. auto oct = std::make_unique<CpuGenerator<Float256, mnd::NONE, true>>();
  136. cpuGenerators.insert({ GeneratorType::FLOAT128, std::move(quad) });
  137. cpuGenerators.insert({ GeneratorType::FLOAT256, std::move(oct) });
  138. #endif // WITH_BOOST
  139. auto dd = std::make_unique<CpuGenerator<DoubleDouble, mnd::NONE, true>>();
  140. auto qd = std::make_unique<CpuGenerator<QuadDouble, mnd::NONE, true>>();
  141. cpuGenerators.insert({ GeneratorType::DOUBLE_DOUBLE, std::move(dd) });
  142. cpuGenerators.insert({ GeneratorType::QUAD_DOUBLE, std::move(qd) });
  143. auto fix512 = std::make_unique<CpuGenerator<Fixed512, mnd::NONE, true>>();
  144. cpuGenerators.insert({ GeneratorType::FIXED512, std::move(fix512) });
  145. devices = createDevices();
  146. adaptiveGenerator = createAdaptiveGenerator();
  147. }
  148. std::unique_ptr<mnd::AdaptiveGenerator> MandelContext::createAdaptiveGenerator(void)
  149. {
  150. auto* floatGen = getCpuGenerator(GeneratorType::FLOAT);
  151. auto* doubleGen = getCpuGenerator(GeneratorType::DOUBLE);
  152. auto* doubleDoubleGen = getCpuGenerator(GeneratorType::DOUBLE_DOUBLE);
  153. auto* quadDoubleGen = getCpuGenerator(GeneratorType::QUAD_DOUBLE);
  154. auto* f256Gen = getCpuGenerator(GeneratorType::FLOAT256);
  155. auto* fix512 = getCpuGenerator(GeneratorType::FIXED512);
  156. if (cpuInfo.hasAvx()) {
  157. floatGen = getCpuGenerator(GeneratorType::FLOAT_AVX);
  158. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_AVX);
  159. }
  160. else if (cpuInfo.hasSse2()) {
  161. floatGen = getCpuGenerator(GeneratorType::FLOAT_SSE2);
  162. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_SSE2);
  163. }
  164. if (cpuInfo.hasAvx() && cpuInfo.hasFma()) {
  165. floatGen = getCpuGenerator(GeneratorType::FLOAT_AVX_FMA);
  166. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_AVX_FMA);
  167. doubleDoubleGen = getCpuGenerator(GeneratorType::DOUBLE_DOUBLE_AVX_FMA);
  168. }
  169. if (cpuInfo.hasAvx512()) {
  170. floatGen = getCpuGenerator(GeneratorType::FLOAT_AVX512);
  171. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_AVX512);
  172. }
  173. if (cpuInfo.hasNeon()) {
  174. floatGen = getCpuGenerator(GeneratorType::FLOAT_NEON);
  175. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_NEON);
  176. }
  177. if (!devices.empty()) {
  178. auto& device = devices[0];
  179. auto* fGen = device->getGenerator(GeneratorType::FLOAT);
  180. auto* dGen = device->getGenerator(GeneratorType::DOUBLE);
  181. auto* ddGen = device->getGenerator(GeneratorType::DOUBLE_DOUBLE);
  182. auto* qdGen = device->getGenerator(GeneratorType::QUAD_DOUBLE);
  183. if (fGen)
  184. floatGen = fGen;
  185. if (dGen)
  186. doubleGen = dGen;
  187. if (ddGen)
  188. doubleDoubleGen = ddGen;
  189. if (qdGen)
  190. quadDoubleGen = qdGen;
  191. }
  192. auto ag = std::make_unique<AdaptiveGenerator>();
  193. ag->addGenerator(getPrecision<float>(), *floatGen);
  194. ag->addGenerator(getPrecision<double>(), *doubleGen);
  195. ag->addGenerator(getPrecision<DoubleDouble>(), *doubleDoubleGen);
  196. ag->addGenerator(getPrecision<QuadDouble>(), *quadDoubleGen);
  197. ag->addGenerator(getPrecision<Float256>(), *f256Gen);
  198. ag->addGenerator(Precision::INF_PREC, *fix512);
  199. return ag;
  200. }
  201. std::vector<std::unique_ptr<MandelDevice>> MandelContext::createDevices(void)
  202. {
  203. std::vector<std::unique_ptr<MandelDevice>> mandelDevices;
  204. #ifdef WITH_OPENCL
  205. std::vector<cl::Platform> platforms;
  206. cl::Platform::get(&platforms);
  207. //platforms.erase(platforms.begin() + 1);
  208. for (auto& platform : platforms) {
  209. std::string name = platform.getInfo<CL_PLATFORM_NAME>();
  210. std::string profile = platform.getInfo<CL_PLATFORM_PROFILE>();
  211. //printf("using opencl platform: %s\n", name.c_str());
  212. //std::string ext = platform.getInfo<CL_PLATFORM_EXTENSIONS>();
  213. //printf("Platform extensions: %s\n", ext.c_str());
  214. //printf("Platform: %s, %s\n", name.c_str(), profile.c_str());
  215. std::vector<cl::Device> devices;
  216. platform.getDevices(CL_DEVICE_TYPE_GPU, &devices);
  217. for (auto& device : devices) {
  218. //printf("Device: %s\n", device.getInfo<CL_DEVICE_NAME>().c_str());
  219. //printf("preferred float width: %d\n", device.getInfo<CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT>());
  220. //printf("vendor: %s\n", device.getInfo<CL_DEVICE_VENDOR>().c_str());
  221. std::string extensions = device.getInfo<CL_DEVICE_EXTENSIONS>();
  222. auto supportsDouble = extensions.find("cl_khr_fp64") != std::string::npos;
  223. //printf("Device extensions: %s\n", ext.c_str());
  224. auto mandelDevice = std::make_unique<mnd::MandelDevice>(
  225. ClDeviceWrapper{ device, cl::Context{ device } });
  226. MandelDevice& md = *mandelDevice;
  227. //printf("clock: %d", device.getInfo<CL_DEVICE_MAX_CLOCK_FREQUENCY>());
  228. md.name = device.getInfo<CL_DEVICE_NAME>();
  229. md.vendor = device.getInfo<CL_DEVICE_VENDOR>();
  230. //printf(" using opencl device: %s\n", md.name.c_str());
  231. try {
  232. md.mandelGenerators.insert({ GeneratorType::FLOAT, std::make_unique<ClGeneratorFloat>(md) });
  233. md.mandelGenerators.insert({ GeneratorType::FIXED64, std::make_unique<ClGenerator64>(md) });
  234. md.mandelGenerators.insert({ GeneratorType::DOUBLE_FLOAT, std::make_unique<ClGeneratorDoubleFloat>(md) });
  235. }
  236. catch (const std::string& err) {
  237. printf("err: %s", err.c_str());
  238. }
  239. if (supportsDouble) {
  240. try {
  241. md.mandelGenerators.insert({ GeneratorType::DOUBLE, std::make_unique<ClGeneratorDouble>(md) });
  242. md.mandelGenerators.insert({ GeneratorType::DOUBLE_DOUBLE, std::make_unique<ClGeneratorDoubleDouble>(md) });
  243. md.mandelGenerators.insert({ GeneratorType::QUAD_DOUBLE, std::make_unique<ClGeneratorQuadDouble>(md) });
  244. }
  245. catch (const std::string& err) {
  246. printf("err: %s", err.c_str());
  247. fflush(stdout);
  248. }
  249. }
  250. try {
  251. //md.generator128 = std::make_unique<ClGenerator128>(device);
  252. }
  253. catch (const std::string& /*err*/) {
  254. //fprintf(stderr, "error creating 128bit cl generator: %s\n", err.c_str());
  255. }
  256. mandelDevices.push_back(std::move(mandelDevice));
  257. }
  258. }
  259. #endif // WITH_OPENCL
  260. return mandelDevices;
  261. }
  262. MandelContext::~MandelContext(void)
  263. {
  264. }
  265. AdaptiveGenerator& MandelContext::getDefaultGenerator(void)
  266. {
  267. return *adaptiveGenerator;
  268. }
  269. std::vector<std::unique_ptr<mnd::MandelDevice>>& MandelContext::getDevices(void)
  270. {
  271. return devices;
  272. }
  273. asmjit::JitRuntime& MandelContext::getJitRuntime(void)
  274. {
  275. return *jitRuntime;
  276. }
  277. MandelGenerator* MandelContext::getCpuGenerator(mnd::GeneratorType type)
  278. {
  279. auto it = cpuGenerators.find(type);
  280. if (it != cpuGenerators.end())
  281. return it->second.get();
  282. else
  283. return nullptr;
  284. }
  285. std::vector<mnd::GeneratorType> MandelContext::getSupportedTypes(void) const
  286. {
  287. std::vector<GeneratorType> types;
  288. for (auto& [type, gen] : cpuGenerators) {
  289. types.push_back(type);
  290. }
  291. return types;
  292. }