CpuGeneratorsAVX.cpp 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139
  1. #include "CpuGenerators.h"
  2. #include <immintrin.h>
  3. #include <omp.h>
  4. #include <memory>
  5. using mnd::CpuGeneratorAvxFloat;
  6. using mnd::CpuGeneratorAvxDouble;
  7. void CpuGeneratorAvxFloat::generate(const mnd::MandelInfo& info, float* data)
  8. {
  9. using T = float;
  10. const MandelViewport& view = info.view;
  11. omp_set_num_threads(2 * omp_get_num_procs());
  12. #pragma omp parallel for
  13. for (long j = 0; j < info.bHeight; j++) {
  14. T y = T(view.y) + T(j) * T(view.height / info.bHeight);
  15. long i = 0;
  16. for (i; i < info.bWidth; i += 8) {
  17. __m256 xs = {
  18. float(view.x + double(i) * view.width / info.bWidth),
  19. float(view.x + double(i + 1) * view.width / info.bWidth),
  20. float(view.x + double(i + 2) * view.width / info.bWidth),
  21. float(view.x + double(i + 3) * view.width / info.bWidth),
  22. float(view.x + double(i + 4) * view.width / info.bWidth),
  23. float(view.x + double(i + 5) * view.width / info.bWidth),
  24. float(view.x + double(i + 6) * view.width / info.bWidth),
  25. float(view.x + double(i + 7) * view.width / info.bWidth)
  26. };
  27. __m256 counter = {0, 0, 0, 0, 0, 0, 0, 0};
  28. __m256 adder = {1, 1, 1, 1, 1, 1, 1, 1};
  29. __m256 resultsa;
  30. __m256 resultsb;
  31. __m256 threshold = {16.0f, 16.0f, 16.0f, 16.0f, 16.0f, 16.0f, 16.0f, 16.0f};
  32. __m256 ys = {y, y, y, y, y, y, y, y};
  33. __m256 a = xs;
  34. __m256 b = ys;
  35. for (int k = 0; k < info.maxIter; k++) {
  36. __m256 aa = _mm256_mul_ps(a, a);
  37. __m256 bb = _mm256_mul_ps(b, b);
  38. __m256 abab = _mm256_mul_ps(a, b); abab = _mm256_add_ps(abab, abab);
  39. a = _mm256_add_ps(_mm256_sub_ps(aa, bb), xs);
  40. b = _mm256_add_ps(abab, ys);
  41. __m256 cmp = _mm256_cmp_ps(_mm256_add_ps(aa, bb), threshold, _CMP_LE_OQ);
  42. resultsa = _mm256_or_ps(_mm256_andnot_ps(cmp, resultsa), _mm256_and_ps(cmp, a));
  43. resultsb = _mm256_or_ps(_mm256_andnot_ps(cmp, resultsb), _mm256_and_ps(cmp, b));
  44. adder = _mm256_and_ps(adder, cmp);
  45. counter = _mm256_add_ps(counter, adder);
  46. if ((k & 0x7) == 0 && _mm256_testz_ps(cmp, cmp) != 0) {
  47. break;
  48. }
  49. }
  50. auto alignVec = [](float* data) -> float* {
  51. void* aligned = data;
  52. ::size_t length = 64;
  53. std::align(32, 8 * sizeof(float), aligned, length);
  54. return static_cast<float*>(aligned);
  55. };
  56. float resData[16];
  57. float* ftRes = alignVec(resData);
  58. float* resa = (float*) &resultsa;
  59. float* resb = (float*) &resultsb;
  60. _mm256_store_ps(ftRes, counter);
  61. for (int k = 0; k < 8 && i + k < info.bWidth; k++)
  62. data[i + k + j * info.bWidth] = ftRes[k] <= 0 ? info.maxIter :
  63. ftRes[k] >= info.maxIter ? info.maxIter :
  64. ((float)ftRes[k]) + 1 - log(log(resa[k] * resa[k] + resb[k] * resb[k]) / 2) / log(2.0f);
  65. }
  66. }
  67. }
  68. void CpuGeneratorAvxDouble::generate(const mnd::MandelInfo& info, float* data)
  69. {
  70. using T = double;
  71. const MandelViewport& view = info.view;
  72. omp_set_num_threads(2 * omp_get_num_procs());
  73. #pragma omp parallel for
  74. for (long j = 0; j < info.bHeight; j++) {
  75. T y = T(view.y) + T(j) * view.height / info.bHeight;
  76. long i = 0;
  77. for (i; i < info.bWidth; i += 4) {
  78. __m256d xs = {
  79. double(view.x) + double(i) * view.width / info.bWidth,
  80. double(view.x) + double(i + 1) * view.width / info.bWidth,
  81. double(view.x) + double(i + 2) * view.width / info.bWidth,
  82. double(view.x) + double(i + 3) * view.width / info.bWidth
  83. };
  84. int itRes[4] = { 0, 0, 0, 0 };
  85. __m256d threshold = { 16.0, 16.0, 16.0, 16.0 };
  86. __m256d counter = { 0, 0, 0, 0 };
  87. __m256d adder = { 1, 1, 1, 1 };
  88. __m256d ys = { y, y, y, y };
  89. __m256d a = xs;
  90. __m256d b = ys;
  91. for (int k = 0; k < info.maxIter; k++) {
  92. __m256d aa = _mm256_mul_pd(a, a);
  93. __m256d bb = _mm256_mul_pd(b, b);
  94. __m256d abab = _mm256_mul_pd(a, b); abab = _mm256_add_pd(abab, abab);
  95. a = _mm256_add_pd(_mm256_sub_pd(aa, bb), xs);
  96. b = _mm256_add_pd(abab, ys);
  97. __m256i cmp = _mm256_castpd_si256(_mm256_cmp_pd(_mm256_add_pd(aa, bb), threshold, _CMP_LE_OQ));
  98. adder = _mm256_and_pd(adder, _mm256_castsi256_pd(cmp));
  99. counter = _mm256_add_pd(counter, adder);
  100. if ((k & 0x7) == 0 && _mm256_testz_si256(cmp, cmp) != 0) {
  101. break;
  102. }
  103. }
  104. auto alignVec = [](double* data) -> double* {
  105. void* aligned = data;
  106. ::size_t length = 64;
  107. std::align(32, 4 * sizeof(double), aligned, length);
  108. return static_cast<double*>(aligned);
  109. };
  110. double resData[8];
  111. double* ftRes = alignVec(resData);
  112. _mm256_store_pd(ftRes, counter);
  113. for (int k = 0; k < 4 && i + k < info.bWidth; k++)
  114. data[i + k + j * info.bWidth] = ftRes[k] > 0 ? float(ftRes[k]) : info.maxIter;
  115. }
  116. }
  117. }