1
0

Mandel.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. #include "Mandel.h"
  2. #include "Fixed.h"
  3. #include "CpuGenerators.h"
  4. #include "JuliaGenerators.h"
  5. #include "ClGenerators.h"
  6. #include <map>
  7. using mnd::MandelDevice;
  8. using mnd::MandelContext;
  9. using mnd::MandelGenerator;
  10. using mnd::AdaptiveGenerator;
  11. template<typename T, typename U>
  12. static std::map<U, T> invertMap(const std::map<T, U>& m)
  13. {
  14. std::map<U, T> res;
  15. std::transform(m.begin(), m.end(), std::inserter(res, res.end()), [](auto& pair) {
  16. return std::pair{ pair.second, pair.first };
  17. });
  18. return res;
  19. }
  20. static const std::map<mnd::GeneratorType, std::string> typeNames =
  21. {
  22. { mnd::GeneratorType::FLOAT, "float" },
  23. { mnd::GeneratorType::FLOAT_SSE2, "float SSE2" },
  24. { mnd::GeneratorType::FLOAT_AVX, "float AVX" },
  25. { mnd::GeneratorType::FLOAT_AVX_FMA, "float AVX+FMA" },
  26. { mnd::GeneratorType::FLOAT_AVX512, "float AVX512" },
  27. { mnd::GeneratorType::FLOAT_NEON, "float NEON" },
  28. { mnd::GeneratorType::DOUBLE_FLOAT, "double float" },
  29. { mnd::GeneratorType::DOUBLE, "double" },
  30. { mnd::GeneratorType::DOUBLE_SSE2, "double SSE2" },
  31. { mnd::GeneratorType::DOUBLE_AVX, "double AVX" },
  32. { mnd::GeneratorType::DOUBLE_AVX_FMA, "double AVX+FMA" },
  33. { mnd::GeneratorType::DOUBLE_AVX512, "double AVX512" },
  34. { mnd::GeneratorType::DOUBLE_NEON, "double NEON" },
  35. { mnd::GeneratorType::DOUBLE_DOUBLE, "double double" },
  36. { mnd::GeneratorType::DOUBLE_DOUBLE_AVX, "double double AVX" },
  37. { mnd::GeneratorType::DOUBLE_DOUBLE_AVX_FMA, "double double AVX+FMA" },
  38. { mnd::GeneratorType::QUAD_DOUBLE, "quad double" },
  39. { mnd::GeneratorType::FLOAT128, "float128" },
  40. { mnd::GeneratorType::FLOAT256, "float256" },
  41. { mnd::GeneratorType::FIXED64, "fixed64" },
  42. { mnd::GeneratorType::FIXED128, "fixed128" },
  43. { mnd::GeneratorType::FIXED512, "fixed512" },
  44. };
  45. static const std::map<std::string, mnd::GeneratorType> nameTypes = invertMap(typeNames);
  46. namespace mnd
  47. {
  48. const std::string& getGeneratorName(mnd::GeneratorType type)
  49. {
  50. return typeNames.at(type);
  51. }
  52. mnd::GeneratorType getTypeFromName(const std::string& name)
  53. {
  54. return nameTypes.at(name);
  55. }
  56. }
  57. MandelContext mnd::initializeContext(void)
  58. {
  59. MandelContext context = MandelContext();
  60. return context;
  61. }
  62. MandelDevice::MandelDevice(void)
  63. {
  64. }
  65. mnd::MandelGenerator* MandelDevice::getGenerator(mnd::GeneratorType type) const
  66. {
  67. auto it = mandelGenerators.find(type);
  68. if (it != mandelGenerators.end())
  69. return it->second.get();
  70. else
  71. return nullptr;
  72. }
  73. std::vector<mnd::GeneratorType> MandelDevice::getSupportedTypes(void) const
  74. {
  75. std::vector<GeneratorType> types;
  76. for (auto& [type, gen] : mandelGenerators) {
  77. types.push_back(type);
  78. }
  79. return types;
  80. }
  81. MandelContext::MandelContext(void)
  82. {
  83. #if defined(__x86_64__) || defined(_M_X64) || defined(__i386) || defined(_M_IX86)
  84. if (cpuInfo.hasAvx512()) {
  85. auto fl = std::make_unique<CpuGenerator<float, mnd::X86_AVX_512, true>>();
  86. auto db = std::make_unique<CpuGenerator<double, mnd::X86_AVX_512, true>>();
  87. cpuGenerators.insert({ GeneratorType::FLOAT_AVX512, std::move(fl) });
  88. cpuGenerators.insert({ GeneratorType::DOUBLE_AVX512, std::move(db) });
  89. }
  90. if (cpuInfo.hasAvx()) {
  91. auto fl = std::make_unique<CpuGenerator<float, mnd::X86_AVX, true>>();
  92. auto db = std::make_unique<CpuGenerator<double, mnd::X86_AVX, true>>();
  93. auto ddb = std::make_unique<CpuGenerator<DoubleDouble, mnd::X86_AVX, true>>();
  94. cpuGenerators.insert({ GeneratorType::FLOAT_AVX, std::move(fl) });
  95. cpuGenerators.insert({ GeneratorType::DOUBLE_AVX, std::move(db) });
  96. cpuGenerators.insert({ GeneratorType::DOUBLE_DOUBLE_AVX, std::move(ddb) });
  97. if (cpuInfo.hasFma()) {
  98. auto favxfma = std::make_unique<CpuGenerator<float, mnd::X86_AVX_FMA, true>>();
  99. auto davxfma = std::make_unique<CpuGenerator<double, mnd::X86_AVX_FMA, true>>();
  100. auto ddavx = std::make_unique<CpuGenerator<DoubleDouble, mnd::X86_AVX_FMA, true>>();
  101. cpuGenerators.insert({ GeneratorType::FLOAT_AVX_FMA, std::move(favxfma) });
  102. cpuGenerators.insert({ GeneratorType::DOUBLE_AVX_FMA, std::move(davxfma) });
  103. cpuGenerators.insert({ GeneratorType::DOUBLE_DOUBLE_AVX_FMA, std::move(ddavx) });
  104. }
  105. }
  106. if (cpuInfo.hasSse2()) {
  107. auto fl = std::make_unique<CpuGenerator<float, mnd::X86_SSE2, true>>();
  108. auto db = std::make_unique<CpuGenerator<double, mnd::X86_SSE2, true>>();
  109. cpuGenerators.insert({ GeneratorType::FLOAT_SSE2, std::move(fl) });
  110. cpuGenerators.insert({ GeneratorType::DOUBLE_SSE2, std::move(db) });
  111. }
  112. #elif defined(__arm__) || defined(__aarch64__) || defined(_M_ARM)
  113. if (cpuInfo.hasNeon()) {
  114. auto fl = std::make_unique<CpuGenerator<float, mnd::ARM_NEON, true>>();
  115. auto db = std::make_unique<CpuGenerator<double, mnd::ARM_NEON, true>>();
  116. cpuGenerators.insert({ GeneratorType::FLOAT_NEON, std::move(fl) });
  117. cpuGenerators.insert({ GeneratorType::DOUBLE_NEON, std::move(db) });
  118. }
  119. #endif
  120. {
  121. auto fl = std::make_unique<CpuGenerator<float, mnd::NONE, true>>();
  122. auto db = std::make_unique<CpuGenerator<double, mnd::NONE, true>>();
  123. cpuGenerators.insert({ GeneratorType::FLOAT, std::move(fl) });
  124. cpuGenerators.insert({ GeneratorType::DOUBLE, std::move(db) });
  125. auto fx64 = std::make_unique<CpuGenerator<Fixed64, mnd::NONE, true>>();
  126. auto fx128 = std::make_unique<CpuGenerator<Fixed128, mnd::NONE, true>>();
  127. cpuGenerators.insert({ GeneratorType::FIXED64, std::move(fx64) });
  128. cpuGenerators.insert({ GeneratorType::FIXED128, std::move(fx128) });
  129. }
  130. #ifdef WITH_BOOST
  131. auto quad = std::make_unique<CpuGenerator<Float128, mnd::NONE, true>>();
  132. auto oct = std::make_unique<CpuGenerator<Float256, mnd::NONE, true>>();
  133. cpuGenerators.insert({ GeneratorType::FLOAT128, std::move(quad) });
  134. cpuGenerators.insert({ GeneratorType::FLOAT256, std::move(oct) });
  135. #endif // WITH_BOOST
  136. auto dd = std::make_unique<CpuGenerator<DoubleDouble, mnd::NONE, true>>();
  137. auto qd = std::make_unique<CpuGenerator<QuadDouble, mnd::NONE, true>>();
  138. cpuGenerators.insert({ GeneratorType::DOUBLE_DOUBLE, std::move(dd) });
  139. cpuGenerators.insert({ GeneratorType::QUAD_DOUBLE, std::move(qd) });
  140. auto fix512 = std::make_unique<CpuGenerator<Fixed512, mnd::NONE, true>>();
  141. cpuGenerators.insert({ GeneratorType::FIXED512, std::move(fix512) });
  142. devices = createDevices();
  143. adaptiveGenerator = createAdaptiveGenerator();
  144. }
  145. std::unique_ptr<mnd::AdaptiveGenerator> MandelContext::createAdaptiveGenerator(void)
  146. {
  147. auto* floatGen = getCpuGenerator(GeneratorType::FLOAT);
  148. auto* doubleGen = getCpuGenerator(GeneratorType::DOUBLE);
  149. auto* doubleDoubleGen = getCpuGenerator(GeneratorType::DOUBLE_DOUBLE);
  150. auto* quadDoubleGen = getCpuGenerator(GeneratorType::QUAD_DOUBLE);
  151. auto* f256Gen = getCpuGenerator(GeneratorType::FLOAT256);
  152. auto* fix512 = getCpuGenerator(GeneratorType::FIXED512);
  153. if (cpuInfo.hasAvx()) {
  154. floatGen = getCpuGenerator(GeneratorType::FLOAT_AVX);
  155. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_AVX);
  156. }
  157. else if (cpuInfo.hasSse2()) {
  158. floatGen = getCpuGenerator(GeneratorType::FLOAT_SSE2);
  159. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_SSE2);
  160. }
  161. if (cpuInfo.hasAvx() && cpuInfo.hasFma()) {
  162. floatGen = getCpuGenerator(GeneratorType::FLOAT_AVX_FMA);
  163. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_AVX_FMA);
  164. doubleDoubleGen = getCpuGenerator(GeneratorType::DOUBLE_DOUBLE_AVX_FMA);
  165. }
  166. if (cpuInfo.hasAvx512()) {
  167. floatGen = getCpuGenerator(GeneratorType::FLOAT_AVX512);
  168. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_AVX512);
  169. }
  170. if (cpuInfo.hasNeon()) {
  171. floatGen = getCpuGenerator(GeneratorType::FLOAT_NEON);
  172. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_NEON);
  173. }
  174. if (!devices.empty()) {
  175. auto& device = devices[0];
  176. auto* fGen = device.getGenerator(GeneratorType::FLOAT);
  177. auto* dGen = device.getGenerator(GeneratorType::DOUBLE);
  178. auto* ddGen = device.getGenerator(GeneratorType::DOUBLE_DOUBLE);
  179. auto* qdGen = device.getGenerator(GeneratorType::QUAD_DOUBLE);
  180. if (fGen)
  181. floatGen = fGen;
  182. if (dGen)
  183. doubleGen = dGen;
  184. if (ddGen)
  185. doubleDoubleGen = ddGen;
  186. if (qdGen)
  187. quadDoubleGen = qdGen;
  188. }
  189. auto ag = std::make_unique<AdaptiveGenerator>();
  190. ag->addGenerator(getPrecision<float>(), *floatGen);
  191. ag->addGenerator(getPrecision<double>(), *doubleGen);
  192. ag->addGenerator(getPrecision<DoubleDouble>(), *doubleDoubleGen);
  193. ag->addGenerator(getPrecision<QuadDouble>(), *quadDoubleGen);
  194. ag->addGenerator(getPrecision<Float256>(), *f256Gen);
  195. ag->addGenerator(Precision::INF_PREC, *fix512);
  196. return ag;
  197. }
  198. std::vector<MandelDevice> MandelContext::createDevices(void)
  199. {
  200. std::vector<MandelDevice> mandelDevices;
  201. #ifdef WITH_OPENCL
  202. std::vector<cl::Platform> platforms;
  203. cl::Platform::get(&platforms);
  204. //platforms.erase(platforms.begin() + 1);
  205. for (auto& platform : platforms) {
  206. std::string name = platform.getInfo<CL_PLATFORM_NAME>();
  207. std::string profile = platform.getInfo<CL_PLATFORM_PROFILE>();
  208. //printf("using opencl platform: %s\n", name.c_str());
  209. //std::string ext = platform.getInfo<CL_PLATFORM_EXTENSIONS>();
  210. //printf("Platform extensions: %s\n", ext.c_str());
  211. //printf("Platform: %s, %s\n", name.c_str(), profile.c_str());
  212. std::vector<cl::Device> devices;
  213. platform.getDevices(CL_DEVICE_TYPE_GPU, &devices);
  214. for (auto& device : devices) {
  215. //printf("Device: %s\n", device.getInfo<CL_DEVICE_NAME>().c_str());
  216. //printf("preferred float width: %d\n", device.getInfo<CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT>());
  217. //printf("vendor: %s\n", device.getInfo<CL_DEVICE_VENDOR>().c_str());
  218. std::string extensions = device.getInfo<CL_DEVICE_EXTENSIONS>();
  219. auto supportsDouble = extensions.find("cl_khr_fp64") != std::string::npos;
  220. //printf("Device extensions: %s\n", ext.c_str());
  221. MandelDevice md;
  222. //printf("clock: %d", device.getInfo<CL_DEVICE_MAX_CLOCK_FREQUENCY>());
  223. md.name = device.getInfo<CL_DEVICE_NAME>();
  224. md.vendor = device.getInfo<CL_DEVICE_VENDOR>();
  225. //printf(" using opencl device: %s\n", md.name.c_str());
  226. try {
  227. md.mandelGenerators.insert({ GeneratorType::FLOAT, std::make_unique<ClGeneratorFloat>(device) });
  228. md.mandelGenerators.insert({ GeneratorType::FIXED64, std::make_unique<ClGenerator64>(device) });
  229. md.mandelGenerators.insert({ GeneratorType::DOUBLE_FLOAT, std::make_unique<ClGeneratorDoubleFloat>(device) });
  230. }
  231. catch (const std::string& err) {
  232. printf("err: %s", err.c_str());
  233. }
  234. if (supportsDouble) {
  235. try {
  236. md.mandelGenerators.insert({ GeneratorType::DOUBLE, std::make_unique<ClGeneratorDouble>(device) });
  237. md.mandelGenerators.insert({ GeneratorType::DOUBLE_DOUBLE, std::make_unique<ClGeneratorDoubleDouble>(device) });
  238. md.mandelGenerators.insert({ GeneratorType::QUAD_DOUBLE, std::make_unique<ClGeneratorQuadDouble>(device) });
  239. }
  240. catch (const std::string& err) {
  241. printf("err: %s", err.c_str());
  242. fflush(stdout);
  243. }
  244. }
  245. try {
  246. //md.generator128 = std::make_unique<ClGenerator128>(device);
  247. }
  248. catch (const std::string& err) {
  249. //fprintf(stderr, "error creating 128bit cl generator: %s\n", err.c_str());
  250. }
  251. mandelDevices.push_back(std::move(md));
  252. }
  253. }
  254. #endif // WITH_OPENCL
  255. return mandelDevices;
  256. }
  257. AdaptiveGenerator& MandelContext::getDefaultGenerator(void)
  258. {
  259. return *adaptiveGenerator;
  260. }
  261. const std::vector<MandelDevice>& MandelContext::getDevices(void)
  262. {
  263. return devices;
  264. }
  265. MandelGenerator* MandelContext::getCpuGenerator(mnd::GeneratorType type)
  266. {
  267. auto it = cpuGenerators.find(type);
  268. if (it != cpuGenerators.end())
  269. return it->second.get();
  270. else
  271. return nullptr;
  272. }
  273. std::vector<mnd::GeneratorType> MandelContext::getSupportedTypes(void) const
  274. {
  275. std::vector<GeneratorType> types;
  276. for (auto& [type, gen] : cpuGenerators) {
  277. types.push_back(type);
  278. }
  279. return types;
  280. }
  281. mnd::JuliaGenerator& MandelContext::getJuliaGenerator()
  282. {
  283. juliaGenerator = std::make_unique<JuliaGeneratorFloat>(getPrecision<double>());
  284. return *juliaGenerator;
  285. }