CpuGeneratorsAVX.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. #include "CpuGenerators.h"
  2. #include "LightDoubleDouble.h"
  3. #include <immintrin.h>
  4. #include <omp.h>
  5. #include <cmath>
  6. #include <utility>
  7. #include <memory>
  8. using mnd::CpuGenerator;
  9. namespace mnd
  10. {
  11. template class CpuGenerator<float, mnd::X86_AVX, false>;
  12. template class CpuGenerator<float, mnd::X86_AVX, true>;
  13. template class CpuGenerator<double, mnd::X86_AVX, false>;
  14. template class CpuGenerator<double, mnd::X86_AVX, true>;
  15. template class CpuGenerator<DoubleDouble, mnd::X86_AVX, false>;
  16. template class CpuGenerator<DoubleDouble, mnd::X86_AVX, true>;
  17. }
  18. template<bool parallel>
  19. void CpuGenerator<float, mnd::X86_AVX, parallel>::generate(const mnd::MandelInfo& info, float* data)
  20. {
  21. using T = float;
  22. const MandelViewport& view = info.view;
  23. const float dppf = float(view.width / info.bWidth);
  24. const float viewxf = float(view.x);
  25. __m256 viewx = _mm256_set1_ps(viewxf);
  26. __m256 dpp = _mm256_set1_ps(dppf);
  27. T jX = mnd::convert<T>(info.juliaX);
  28. T jY = mnd::convert<T>(info.juliaY);
  29. __m256 juliaX = { jX, jX, jX, jX, jX, jX, jX, jX };
  30. __m256 juliaY = { jY, jY, jY, jY, jY, jY, jY, jY };
  31. if constexpr(parallel)
  32. omp_set_num_threads(omp_get_num_procs());
  33. #pragma omp parallel for schedule(static, 1) if (parallel)
  34. for (long j = 0; j < info.bHeight; j++) {
  35. T y = T(view.y) + T(j) * T(view.height / info.bHeight);
  36. __m256 ys = _mm256_set1_ps(y);
  37. for (long i = 0; i < info.bWidth; i += 16) {
  38. __m256 pixc = { float(i), float(i + 1), float(i + 2), float(i + 3), float(i + 4), float(i + 5), float(i + 6), float(i + 7) };
  39. __m256 pixc2 = { float(i + 8), float(i + 9), float(i + 10), float(i + 11), float(i + 12), float(i + 13), float(i + 14), float(i + 15) };
  40. __m256 xs = _mm256_add_ps(_mm256_mul_ps(dpp, pixc), viewx);
  41. __m256 xs2 = _mm256_add_ps(_mm256_mul_ps(dpp, pixc2), viewx);
  42. __m256 counter = _mm256_setzero_ps();
  43. __m256 adder = _mm256_set1_ps(1);
  44. __m256 resultsa = _mm256_setzero_ps();
  45. __m256 resultsb = _mm256_setzero_ps();
  46. __m256 counter2 = _mm256_setzero_ps();
  47. __m256 adder2 = _mm256_set1_ps(1);
  48. __m256 resultsa2 = _mm256_setzero_ps();
  49. __m256 resultsb2 = _mm256_setzero_ps();
  50. __m256 threshold = _mm256_set1_ps(16);
  51. __m256 a = xs;
  52. __m256 a2 = xs2;
  53. __m256 b = ys;
  54. __m256 b2 = ys;
  55. __m256 cx = info.julia ? juliaX : xs;
  56. __m256 cx2 = info.julia ? juliaX : xs2;
  57. __m256 cy = info.julia ? juliaY : ys;
  58. if (info.smooth) {
  59. for (int k = 0; k < info.maxIter; k++) {
  60. __m256 aa = _mm256_mul_ps(a, a);
  61. __m256 aa2 = _mm256_mul_ps(a2, a2);
  62. __m256 bb = _mm256_mul_ps(b, b);
  63. __m256 bb2 = _mm256_mul_ps(b2, b2);
  64. __m256 abab = _mm256_mul_ps(a, b); abab = _mm256_add_ps(abab, abab);
  65. __m256 abab2 = _mm256_mul_ps(a2, b2); abab2 = _mm256_add_ps(abab2, abab2);
  66. a = _mm256_add_ps(_mm256_sub_ps(aa, bb), cx);
  67. a2 = _mm256_add_ps(_mm256_sub_ps(aa2, bb2), cx2);
  68. b = _mm256_add_ps(abab, cy);
  69. b2 = _mm256_add_ps(abab2, cy);
  70. __m256 cmp = _mm256_cmp_ps(_mm256_add_ps(aa, bb), threshold, _CMP_LE_OQ);
  71. __m256 cmp2 = _mm256_cmp_ps(_mm256_add_ps(aa2, bb2), threshold, _CMP_LE_OQ);
  72. resultsa = _mm256_or_ps(_mm256_andnot_ps(cmp, resultsa), _mm256_and_ps(cmp, a));
  73. resultsb = _mm256_or_ps(_mm256_andnot_ps(cmp, resultsb), _mm256_and_ps(cmp, b));
  74. resultsa2 = _mm256_or_ps(_mm256_andnot_ps(cmp2, resultsa2), _mm256_and_ps(cmp2, a2));
  75. resultsb2 = _mm256_or_ps(_mm256_andnot_ps(cmp2, resultsb2), _mm256_and_ps(cmp2, b2));
  76. adder = _mm256_and_ps(adder, cmp);
  77. counter = _mm256_add_ps(counter, adder);
  78. adder2 = _mm256_and_ps(adder2, cmp2);
  79. counter2 = _mm256_add_ps(counter2, adder2);
  80. if ((k & 0x7) == 0 && _mm256_testz_ps(cmp, cmp) != 0 && _mm256_testz_ps(cmp2, cmp2) != 0) {
  81. break;
  82. }
  83. }
  84. }
  85. else {
  86. for (int k = 0; k < info.maxIter; k++) {
  87. __m256 aa = _mm256_mul_ps(a, a);
  88. __m256 aa2 = _mm256_mul_ps(a2, a2);
  89. __m256 bb = _mm256_mul_ps(b, b);
  90. __m256 bb2 = _mm256_mul_ps(b2, b2);
  91. __m256 abab = _mm256_mul_ps(a, b); abab = _mm256_add_ps(abab, abab);
  92. __m256 abab2 = _mm256_mul_ps(a2, b2); abab2 = _mm256_add_ps(abab2, abab2);
  93. a = _mm256_add_ps(_mm256_sub_ps(aa, bb), cx);
  94. a2 = _mm256_add_ps(_mm256_sub_ps(aa2, bb2), cx2);
  95. b = _mm256_add_ps(abab, cy);
  96. b2 = _mm256_add_ps(abab2, cy);
  97. __m256 cmp = _mm256_cmp_ps(_mm256_add_ps(aa, bb), threshold, _CMP_LE_OQ);
  98. __m256 cmp2 = _mm256_cmp_ps(_mm256_add_ps(aa2, bb2), threshold, _CMP_LE_OQ);
  99. adder = _mm256_and_ps(adder, cmp);
  100. counter = _mm256_add_ps(counter, adder);
  101. adder2 = _mm256_and_ps(adder2, cmp2);
  102. counter2 = _mm256_add_ps(counter2, adder2);
  103. if ((k & 0x7) == 0 && _mm256_testz_ps(cmp, cmp) != 0 && _mm256_testz_ps(cmp2, cmp2) != 0) {
  104. break;
  105. }
  106. }
  107. }
  108. auto alignVec = [](float* data) -> float* {
  109. void* aligned = data;
  110. ::size_t length = 64;
  111. std::align(32, 8 * sizeof(float), aligned, length);
  112. return static_cast<float*>(aligned);
  113. };
  114. float resData[64];
  115. float* ftRes = alignVec(resData);
  116. float* resa = ftRes + 16;
  117. float* resb = resa + 16;
  118. _mm256_store_ps(ftRes, counter);
  119. _mm256_store_ps(ftRes + 8, counter2);
  120. _mm256_store_ps(resa, resultsa);
  121. _mm256_store_ps(resa + 8, resultsa2);
  122. _mm256_store_ps(resb, resultsb);
  123. _mm256_store_ps(resb + 8, resultsb2);
  124. for (int k = 0; k < 16 && i + k < info.bWidth; k++) {
  125. if (info.smooth) {
  126. data[i + k + j * info.bWidth] = ftRes[k] <= 0 ? info.maxIter :
  127. ftRes[k] >= info.maxIter ? info.maxIter :
  128. ((float)ftRes[k]) + 1 - ::log(::log(resa[k] * resa[k] + resb[k] * resb[k]) / 2) / ::log(2.0f);
  129. }
  130. else {
  131. data[i + k + j * info.bWidth] = ftRes[k] <= 0 ? info.maxIter : ftRes[k];
  132. }
  133. }
  134. }
  135. }
  136. }
  137. template<bool parallel>
  138. void CpuGenerator<double, mnd::X86_AVX, parallel>::generate(const mnd::MandelInfo& info, float* data)
  139. {
  140. using T = double;
  141. const MandelViewport& view = info.view;
  142. const double dppf = double(view.width / info.bWidth);
  143. const double viewxf = double(view.x);
  144. __m256d viewx = { viewxf, viewxf, viewxf, viewxf };
  145. __m256d dpp = { dppf, dppf, dppf, dppf };
  146. T jX = mnd::convert<T>(info.juliaX);
  147. T jY = mnd::convert<T>(info.juliaY);
  148. __m256d juliaX = { jX, jX, jX, jX };
  149. __m256d juliaY = { jY, jY, jY, jY };
  150. if constexpr(parallel)
  151. omp_set_num_threads(omp_get_num_procs());
  152. #pragma omp parallel for schedule(static, 1) if (parallel)
  153. for (long j = 0; j < info.bHeight; j++) {
  154. T y = T(view.y + T(j) * view.height / info.bHeight);
  155. __m256d ys = { y, y, y, y };
  156. for (long i = 0; i < info.bWidth; i += 8) {
  157. __m256d pixc = { double(i), double(i + 1), double(i + 2), double(i + 3) };
  158. __m256d pixc2 = { double(i + 4), double(i + 5), double(i + 6), double(i + 7) };
  159. __m256d xs = _mm256_add_pd(_mm256_mul_pd(dpp, pixc), viewx);
  160. __m256d xs2 = _mm256_add_pd(_mm256_mul_pd(dpp, pixc2), viewx);
  161. int itRes[4] = { 0, 0, 0, 0 };
  162. __m256d threshold = { 16.0, 16.0, 16.0, 16.0 };
  163. __m256d counter = { 0, 0, 0, 0 };
  164. __m256d adder = { 1, 1, 1, 1 };
  165. __m256d counter2 = { 0, 0, 0, 0 };
  166. __m256d adder2 = { 1, 1, 1, 1 };
  167. __m256d resultsa = { 0, 0, 0, 0 };
  168. __m256d resultsb = { 0, 0, 0, 0 };
  169. __m256d resultsa2 = { 0, 0, 0, 0 };
  170. __m256d resultsb2 = { 0, 0, 0, 0 };
  171. __m256d a = xs;
  172. __m256d b = ys;
  173. __m256d a2 = xs2;
  174. __m256d b2 = ys;
  175. __m256d cx = info.julia ? juliaX : xs;
  176. __m256d cx2 = info.julia ? juliaX : xs2;
  177. __m256d cy = info.julia ? juliaY : ys;
  178. if (info.smooth) {
  179. for (int k = 0; k < info.maxIter; k++) {
  180. __m256d aa = _mm256_mul_pd(a, a);
  181. __m256d aa2 = _mm256_mul_pd(a2, a2);
  182. __m256d bb = _mm256_mul_pd(b, b);
  183. __m256d bb2 = _mm256_mul_pd(b2, b2);
  184. __m256d abab = _mm256_mul_pd(a, b); abab = _mm256_add_pd(abab, abab);
  185. __m256d abab2 = _mm256_mul_pd(a2, b2); abab2 = _mm256_add_pd(abab2, abab2);
  186. a = _mm256_add_pd(_mm256_sub_pd(aa, bb), cx);
  187. a2 = _mm256_add_pd(_mm256_sub_pd(aa2, bb2), cx2);
  188. b = _mm256_add_pd(abab, cy);
  189. b2 = _mm256_add_pd(abab2, cy);
  190. __m256d cmp = _mm256_cmp_pd(_mm256_add_pd(aa, bb), threshold, _CMP_LE_OQ);
  191. __m256d cmp2 = _mm256_cmp_pd(_mm256_add_pd(aa2, bb2), threshold, _CMP_LE_OQ);
  192. resultsa = _mm256_or_pd(_mm256_andnot_pd(cmp, resultsa), _mm256_and_pd(cmp, a));
  193. resultsb = _mm256_or_pd(_mm256_andnot_pd(cmp, resultsb), _mm256_and_pd(cmp, b));
  194. resultsa2 = _mm256_or_pd(_mm256_andnot_pd(cmp2, resultsa2), _mm256_and_pd(cmp2, a2));
  195. resultsb2 = _mm256_or_pd(_mm256_andnot_pd(cmp2, resultsb2), _mm256_and_pd(cmp2, b2));
  196. adder = _mm256_and_pd(adder, cmp);
  197. counter = _mm256_add_pd(counter, adder);
  198. adder2 = _mm256_and_pd(adder2, cmp2);
  199. counter2 = _mm256_add_pd(counter2, adder2);
  200. if ((k & 0x7) == 0 && _mm256_testz_si256(_mm256_castpd_si256(cmp), _mm256_castpd_si256(cmp)) != 0 &&
  201. _mm256_testz_si256(_mm256_castpd_si256(cmp2), _mm256_castpd_si256(cmp2)) != 0) {
  202. break;
  203. }
  204. }
  205. }
  206. else {
  207. for (int k = 0; k < info.maxIter; k++) {
  208. __m256d aa = _mm256_mul_pd(a, a);
  209. __m256d aa2 = _mm256_mul_pd(a2, a2);
  210. __m256d bb = _mm256_mul_pd(b, b);
  211. __m256d bb2 = _mm256_mul_pd(b2, b2);
  212. __m256d abab = _mm256_mul_pd(a, b); abab = _mm256_add_pd(abab, abab);
  213. __m256d abab2 = _mm256_mul_pd(a2, b2); abab2 = _mm256_add_pd(abab2, abab2);
  214. a = _mm256_add_pd(_mm256_sub_pd(aa, bb), cx);
  215. a2 = _mm256_add_pd(_mm256_sub_pd(aa2, bb2), cx2);
  216. b = _mm256_add_pd(abab, cy);
  217. b2 = _mm256_add_pd(abab2, cy);
  218. __m256d cmp = _mm256_cmp_pd(_mm256_add_pd(aa, bb), threshold, _CMP_LE_OQ);
  219. __m256d cmp2 = _mm256_cmp_pd(_mm256_add_pd(aa2, bb2), threshold, _CMP_LE_OQ);
  220. adder = _mm256_and_pd(adder, cmp);
  221. counter = _mm256_add_pd(counter, adder);
  222. adder2 = _mm256_and_pd(adder2, cmp2);
  223. counter2 = _mm256_add_pd(counter2, adder2);
  224. if ((k & 0x7) == 0 && _mm256_testz_si256(_mm256_castpd_si256(cmp), _mm256_castpd_si256(cmp)) != 0 &&
  225. _mm256_testz_si256(_mm256_castpd_si256(cmp2), _mm256_castpd_si256(cmp2)) != 0) {
  226. break;
  227. }
  228. }
  229. }
  230. auto alignVec = [](double* data) -> double* {
  231. void* aligned = data;
  232. ::size_t length = 64;
  233. std::align(32, 4 * sizeof(double), aligned, length);
  234. return static_cast<double*>(aligned);
  235. };
  236. double resData[8];
  237. double* ftRes = alignVec(resData);
  238. double* resa = (double*) &resultsa;
  239. double* resb = (double*) &resultsb;
  240. _mm256_store_pd(ftRes, counter);
  241. for (int k = 0; k < 4 && i + k < info.bWidth; k++) {
  242. if (info.smooth)
  243. data[i + k + j * info.bWidth] = ftRes[k] <= 0 ? float(info.maxIter) :
  244. ftRes[k] >= info.maxIter ? float(info.maxIter) :
  245. float(((float)ftRes[k]) + 1 - ::log(::log(resa[k] * resa[k] + resb[k] * resb[k]) / 2) / ::log(2.0f));
  246. else
  247. data[i + k + j * info.bWidth] = ftRes[k] > 0 ? float(ftRes[k]) : info.maxIter;
  248. }
  249. resa = (double*) &resultsa2;
  250. resb = (double*) &resultsb2;
  251. _mm256_store_pd(ftRes, counter2);
  252. i += 4;
  253. for (int k = 0; k < 4 && i + k < info.bWidth; k++) {
  254. if (info.smooth)
  255. data[i + k + j * info.bWidth] = ftRes[k] <= 0 ? float(info.maxIter) :
  256. ftRes[k] >= info.maxIter ? float(info.maxIter) :
  257. float(((float)ftRes[k]) + 1 - ::log(::log(resa[k] * resa[k] + resb[k] * resb[k]) / 2) / ::log(2.0f));
  258. else
  259. data[i + k + j * info.bWidth] = ftRes[k] > 0 ? float(ftRes[k]) : info.maxIter;
  260. }
  261. i -= 4;
  262. }
  263. }
  264. }
  265. struct VecPair
  266. {
  267. __m256d a;
  268. __m256d b;
  269. };
  270. static inline VecPair quickTwoSum(__m256d a, __m256d b)
  271. {
  272. __m256d s = _mm256_add_pd(a, b);
  273. __m256d e = _mm256_sub_pd(b, _mm256_sub_pd(s, a));
  274. return { s, e };
  275. }
  276. static inline VecPair quickTwoDiff(__m256d a, __m256d b)
  277. {
  278. __m256d s = _mm256_sub_pd(a, b);
  279. __m256d e = _mm256_sub_pd(_mm256_sub_pd(a, s), b);
  280. return { s, e };
  281. }
  282. static inline VecPair twoSum(__m256d a, __m256d b)
  283. {
  284. __m256d s = _mm256_add_pd(a, b);
  285. __m256d bb = _mm256_sub_pd(s, a);
  286. __m256d e = _mm256_add_pd(_mm256_sub_pd(a, _mm256_sub_pd(s, bb)), _mm256_sub_pd(b, bb));
  287. return { s, e };
  288. }
  289. static inline VecPair twoDiff(__m256d a, __m256d b)
  290. {
  291. __m256d s = _mm256_sub_pd(a, b);
  292. __m256d bb = _mm256_sub_pd(s, a);
  293. __m256d e = _mm256_sub_pd(_mm256_sub_pd(a, _mm256_sub_pd(s, bb)), _mm256_add_pd(b, bb));
  294. return { s, e };
  295. }
  296. static inline VecPair split(__m256d a)
  297. {
  298. /*
  299. // -- this should never happen when doing mandelbrot calculations,
  300. // so we omit this check.
  301. if (a > _QD_SPLIT_THRESH || a < -_QD_SPLIT_THRESH) {
  302. a *= 3.7252902984619140625e-09; // 2^-28
  303. temp = _QD_SPLITTER * a;
  304. hi = temp - (temp - a);
  305. lo = a - hi;
  306. hi *= 268435456.0; // 2^28
  307. lo *= 268435456.0; // 2^28
  308. } else {
  309. temp = _QD_SPLITTER * a;
  310. hi = temp - (temp - a);
  311. lo = a - hi;
  312. }
  313. */
  314. static const __m256d SPLITTER = { 134217729.0, 134217729.0, 134217729.0, 134217729.0 };
  315. __m256d temp = _mm256_mul_pd(SPLITTER, a);
  316. __m256d hi = _mm256_sub_pd(temp, _mm256_sub_pd(temp, a));
  317. __m256d lo = _mm256_sub_pd(a, hi);
  318. return { hi, lo };
  319. }
  320. static inline VecPair twoProd(__m256d a, __m256d b)
  321. {
  322. __m256d p = _mm256_mul_pd(a, b);
  323. auto[a_hi, a_lo] = split(a);
  324. auto[b_hi, b_lo] = split(b);
  325. __m256d err = _mm256_add_pd(_mm256_add_pd(_mm256_sub_pd(_mm256_mul_pd(a_hi, b_hi), p), _mm256_add_pd(_mm256_mul_pd(a_hi, b_lo), _mm256_mul_pd(a_lo, b_hi))), _mm256_mul_pd(a_lo, b_lo));
  326. return { p, err };
  327. }
  328. struct AvxDoubleDouble
  329. {
  330. __m256d x[2];
  331. inline AvxDoubleDouble(__m256d a, __m256d b) :
  332. x{ a, b }
  333. {}
  334. inline AvxDoubleDouble(double a, double b) :
  335. x{ _mm256_set1_pd(a), _mm256_set1_pd(b) }
  336. {}
  337. inline AvxDoubleDouble operator + (const AvxDoubleDouble& sm) const
  338. {
  339. auto[s, e] = twoSum(x[0], sm.x[0]);
  340. e = _mm256_add_pd(e, _mm256_add_pd(x[1], sm.x[1]));
  341. auto[r1, r2] = quickTwoSum(s, e);
  342. return AvxDoubleDouble{ r1, r2 };
  343. }
  344. inline AvxDoubleDouble operator - (const AvxDoubleDouble& sm) const
  345. {
  346. auto[s, e] = twoDiff(x[0], sm.x[0]);
  347. e = _mm256_add_pd(e, x[1]);
  348. e = _mm256_sub_pd(e, sm.x[1]);
  349. auto[r1, r2] = quickTwoSum(s, e);
  350. return AvxDoubleDouble{ r1, r2 };
  351. }
  352. inline AvxDoubleDouble operator * (const AvxDoubleDouble& sm) const
  353. {
  354. auto[p1, p2] = twoProd(this->x[0], sm.x[0]);
  355. p2 = _mm256_add_pd(p2,
  356. _mm256_add_pd(_mm256_mul_pd(sm.x[1], x[0]), _mm256_mul_pd(sm.x[0], x[1])) );
  357. auto[r1, r2] = quickTwoSum(p1, p2);
  358. return AvxDoubleDouble{ r1, r2 };
  359. }
  360. };
  361. template<bool parallel>
  362. void CpuGenerator<mnd::DoubleDouble, mnd::X86_AVX, parallel>::generate(const mnd::MandelInfo& info, float* data)
  363. {
  364. const MandelViewport& view = info.view;
  365. using T = LightDoubleDouble;
  366. T viewx = mnd::convert<T>(view.x);
  367. T viewy = mnd::convert<T>(view.y);
  368. T wpp = mnd::convert<T>(view.width / info.bWidth);
  369. T hpp = mnd::convert<T>(view.height / info.bHeight);
  370. T jX = mnd::convert<T>(info.juliaX);
  371. T jY = mnd::convert<T>(info.juliaY);
  372. AvxDoubleDouble juliaX = { jX[0], jX[1] };
  373. AvxDoubleDouble juliaY = { jY[0], jY[1] };
  374. if constexpr(parallel)
  375. omp_set_num_threads(omp_get_num_procs());
  376. #pragma omp parallel for schedule(static, 1) if (parallel)
  377. for (long j = 0; j < info.bHeight; j++) {
  378. T y = viewy + T(double(j)) * hpp;
  379. AvxDoubleDouble ys{ y[0], y[1] };
  380. for (long i = 0; i < info.bWidth; i += 4) {
  381. T x1 = viewx + T(double(i)) * wpp;
  382. T x2 = x1 + wpp;
  383. T x3 = x2 + wpp;
  384. T x4 = x3 + wpp;
  385. __m256d x0s = {
  386. x1[0], x2[0], x3[0], x4[0],
  387. };
  388. __m256d x1s = {
  389. x1[1], x2[1], x3[1], x4[1],
  390. };
  391. AvxDoubleDouble xs{ x0s, x1s };
  392. AvxDoubleDouble cx = info.julia ? juliaX : xs;
  393. AvxDoubleDouble cy = info.julia ? juliaY : ys;
  394. int itRes[4] = { 0, 0, 0, 0 };
  395. __m256d threshold = { 16.0, 16.0, 16.0, 16.0 };
  396. __m256d counter = { 0, 0, 0, 0 };
  397. __m256d adder = { 1, 1, 1, 1 };
  398. AvxDoubleDouble a = xs;
  399. AvxDoubleDouble b = ys;
  400. __m256d resultsa = _mm256_set1_pd(0);
  401. __m256d resultsb = _mm256_set1_pd(0);
  402. for (int k = 0; k < info.maxIter; k++) {
  403. AvxDoubleDouble aa = a * a;
  404. AvxDoubleDouble bb = b * b;
  405. AvxDoubleDouble abab = a * b; abab = abab + abab;
  406. a = aa - bb + cx;
  407. b = abab + cy;
  408. __m256d cmp = _mm256_cmp_pd(_mm256_add_pd(aa.x[0], bb.x[0]), threshold, _CMP_LE_OQ);
  409. if (info.smooth) {
  410. resultsa = _mm256_or_pd(_mm256_andnot_pd(cmp, resultsa), _mm256_and_pd(cmp, a.x[0]));
  411. resultsb = _mm256_or_pd(_mm256_andnot_pd(cmp, resultsb), _mm256_and_pd(cmp, b.x[0]));
  412. }
  413. adder = _mm256_and_pd(adder, cmp);
  414. counter = _mm256_add_pd(counter, adder);
  415. if (_mm256_testz_si256(_mm256_castpd_si256(cmp), _mm256_castpd_si256(cmp)) != 0) {
  416. break;
  417. }
  418. }
  419. auto alignVec = [](double* data) -> double* {
  420. void* aligned = data;
  421. ::size_t length = 64;
  422. std::align(32, 4 * sizeof(double), aligned, length);
  423. return static_cast<double*>(aligned);
  424. };
  425. double resData[8];
  426. double* ftRes = alignVec(resData);
  427. double* resa = (double*) &resultsa;
  428. double* resb = (double*) &resultsb;
  429. _mm256_store_pd(ftRes, counter);
  430. for (int k = 0; k < 4 && i + k < info.bWidth; k++) {
  431. if (info.smooth)
  432. data[i + k + j * info.bWidth] = float(ftRes[k] <= 0 ? info.maxIter :
  433. ftRes[k] >= info.maxIter ? info.maxIter :
  434. ((float)ftRes[k]) + 1 - ::log(::log(float(resa[k] * resa[k] + resb[k] * resb[k])) / 2) / ::log(2.0f));
  435. else
  436. data[i + k + j * info.bWidth] = ftRes[k] > 0 ? float(ftRes[k]) : info.maxIter;
  437. }
  438. }
  439. }
  440. }