CpuGeneratorsAVX.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520
  1. #include "CpuGenerators.h"
  2. #include "LightDoubleDouble.h"
  3. #include <immintrin.h>
  4. #include <omp.h>
  5. #include <cmath>
  6. #include <utility>
  7. #include <memory>
  8. using mnd::CpuGenerator;
  9. namespace mnd
  10. {
  11. template class CpuGenerator<float, mnd::X86_AVX, false>;
  12. template class CpuGenerator<float, mnd::X86_AVX, true>;
  13. template class CpuGenerator<double, mnd::X86_AVX, false>;
  14. template class CpuGenerator<double, mnd::X86_AVX, true>;
  15. template class CpuGenerator<DoubleDouble, mnd::X86_AVX, false>;
  16. template class CpuGenerator<DoubleDouble, mnd::X86_AVX, true>;
  17. }
  18. template<bool parallel>
  19. void CpuGenerator<float, mnd::X86_AVX, parallel>::generate(const mnd::MandelInfo& info, float* data)
  20. {
  21. using T = float;
  22. const MandelViewport& view = info.view;
  23. const float dppf = float(view.width / info.bWidth);
  24. const float viewxf = float(view.x);
  25. __m256 viewx = _mm256_set1_ps(viewxf);
  26. __m256 dpp = _mm256_set1_ps(dppf);
  27. T jX = mnd::convert<T>(info.juliaX);
  28. T jY = mnd::convert<T>(info.juliaY);
  29. __m256 juliaX = { jX, jX, jX, jX, jX, jX, jX, jX };
  30. __m256 juliaY = { jY, jY, jY, jY, jY, jY, jY, jY };
  31. #if defined(_OPENMP)
  32. if constexpr(parallel)
  33. omp_set_num_threads(omp_get_num_procs());
  34. # pragma omp parallel for schedule(static, 1) if (parallel)
  35. #endif
  36. for (long j = 0; j < info.bHeight; j++) {
  37. T y = T(view.y) + T(j) * T(view.height / info.bHeight);
  38. __m256 ys = _mm256_set1_ps(y);
  39. for (long i = 0; i < info.bWidth; i += 16) {
  40. __m256 pixc = { float(i), float(i + 1), float(i + 2), float(i + 3), float(i + 4), float(i + 5), float(i + 6), float(i + 7) };
  41. __m256 pixc2 = { float(i + 8), float(i + 9), float(i + 10), float(i + 11), float(i + 12), float(i + 13), float(i + 14), float(i + 15) };
  42. __m256 xs = _mm256_add_ps(_mm256_mul_ps(dpp, pixc), viewx);
  43. __m256 xs2 = _mm256_add_ps(_mm256_mul_ps(dpp, pixc2), viewx);
  44. __m256 counter = _mm256_setzero_ps();
  45. __m256 adder = _mm256_set1_ps(1);
  46. __m256 resultsa = _mm256_setzero_ps();
  47. __m256 resultsb = _mm256_setzero_ps();
  48. __m256 counter2 = _mm256_setzero_ps();
  49. __m256 adder2 = _mm256_set1_ps(1);
  50. __m256 resultsa2 = _mm256_setzero_ps();
  51. __m256 resultsb2 = _mm256_setzero_ps();
  52. __m256 threshold = _mm256_set1_ps(16);
  53. __m256 a = xs;
  54. __m256 a2 = xs2;
  55. __m256 b = ys;
  56. __m256 b2 = ys;
  57. __m256 cx = info.julia ? juliaX : xs;
  58. __m256 cx2 = info.julia ? juliaX : xs2;
  59. __m256 cy = info.julia ? juliaY : ys;
  60. if (info.smooth) {
  61. for (int k = 0; k < info.maxIter; k++) {
  62. __m256 aa = _mm256_mul_ps(a, a);
  63. __m256 aa2 = _mm256_mul_ps(a2, a2);
  64. __m256 bb = _mm256_mul_ps(b, b);
  65. __m256 bb2 = _mm256_mul_ps(b2, b2);
  66. __m256 abab = _mm256_mul_ps(a, b); abab = _mm256_add_ps(abab, abab);
  67. __m256 abab2 = _mm256_mul_ps(a2, b2); abab2 = _mm256_add_ps(abab2, abab2);
  68. a = _mm256_add_ps(_mm256_sub_ps(aa, bb), cx);
  69. a2 = _mm256_add_ps(_mm256_sub_ps(aa2, bb2), cx2);
  70. b = _mm256_add_ps(abab, cy);
  71. b2 = _mm256_add_ps(abab2, cy);
  72. __m256 cmp = _mm256_cmp_ps(_mm256_add_ps(aa, bb), threshold, _CMP_LE_OQ);
  73. __m256 cmp2 = _mm256_cmp_ps(_mm256_add_ps(aa2, bb2), threshold, _CMP_LE_OQ);
  74. resultsa = _mm256_or_ps(_mm256_andnot_ps(cmp, resultsa), _mm256_and_ps(cmp, a));
  75. resultsb = _mm256_or_ps(_mm256_andnot_ps(cmp, resultsb), _mm256_and_ps(cmp, b));
  76. resultsa2 = _mm256_or_ps(_mm256_andnot_ps(cmp2, resultsa2), _mm256_and_ps(cmp2, a2));
  77. resultsb2 = _mm256_or_ps(_mm256_andnot_ps(cmp2, resultsb2), _mm256_and_ps(cmp2, b2));
  78. adder = _mm256_and_ps(adder, cmp);
  79. counter = _mm256_add_ps(counter, adder);
  80. adder2 = _mm256_and_ps(adder2, cmp2);
  81. counter2 = _mm256_add_ps(counter2, adder2);
  82. if ((k & 0x7) == 0 && _mm256_testz_ps(cmp, cmp) != 0 && _mm256_testz_ps(cmp2, cmp2) != 0) {
  83. break;
  84. }
  85. }
  86. }
  87. else {
  88. for (int k = 0; k < info.maxIter; k++) {
  89. __m256 aa = _mm256_mul_ps(a, a);
  90. __m256 aa2 = _mm256_mul_ps(a2, a2);
  91. __m256 bb = _mm256_mul_ps(b, b);
  92. __m256 bb2 = _mm256_mul_ps(b2, b2);
  93. __m256 abab = _mm256_mul_ps(a, b); abab = _mm256_add_ps(abab, abab);
  94. __m256 abab2 = _mm256_mul_ps(a2, b2); abab2 = _mm256_add_ps(abab2, abab2);
  95. a = _mm256_add_ps(_mm256_sub_ps(aa, bb), cx);
  96. a2 = _mm256_add_ps(_mm256_sub_ps(aa2, bb2), cx2);
  97. b = _mm256_add_ps(abab, cy);
  98. b2 = _mm256_add_ps(abab2, cy);
  99. __m256 cmp = _mm256_cmp_ps(_mm256_add_ps(aa, bb), threshold, _CMP_LE_OQ);
  100. __m256 cmp2 = _mm256_cmp_ps(_mm256_add_ps(aa2, bb2), threshold, _CMP_LE_OQ);
  101. adder = _mm256_and_ps(adder, cmp);
  102. counter = _mm256_add_ps(counter, adder);
  103. adder2 = _mm256_and_ps(adder2, cmp2);
  104. counter2 = _mm256_add_ps(counter2, adder2);
  105. if ((k & 0x7) == 0 && _mm256_testz_ps(cmp, cmp) != 0 && _mm256_testz_ps(cmp2, cmp2) != 0) {
  106. break;
  107. }
  108. }
  109. }
  110. auto alignVec = [](float* data) -> float* {
  111. void* aligned = data;
  112. ::size_t length = 64;
  113. std::align(32, 8 * sizeof(float), aligned, length);
  114. return static_cast<float*>(aligned);
  115. };
  116. float resData[64];
  117. float* ftRes = alignVec(resData);
  118. float* resa = ftRes + 16;
  119. float* resb = resa + 16;
  120. _mm256_store_ps(ftRes, counter);
  121. _mm256_store_ps(ftRes + 8, counter2);
  122. _mm256_store_ps(resa, resultsa);
  123. _mm256_store_ps(resa + 8, resultsa2);
  124. _mm256_store_ps(resb, resultsb);
  125. _mm256_store_ps(resb + 8, resultsb2);
  126. for (int k = 0; k < 16 && i + k < info.bWidth; k++) {
  127. if (info.smooth) {
  128. data[i + k + j * info.bWidth] = ftRes[k] <= 0 ? info.maxIter :
  129. ftRes[k] >= info.maxIter ? info.maxIter :
  130. ((float)ftRes[k]) + 1 - ::log(::log(resa[k] * resa[k] + resb[k] * resb[k]) / 2) / ::log(2.0f);
  131. }
  132. else {
  133. data[i + k + j * info.bWidth] = ftRes[k] <= 0 ? info.maxIter : ftRes[k];
  134. }
  135. }
  136. }
  137. }
  138. }
  139. template<bool parallel>
  140. void CpuGenerator<double, mnd::X86_AVX, parallel>::generate(const mnd::MandelInfo& info, float* data)
  141. {
  142. using T = double;
  143. const MandelViewport& view = info.view;
  144. const double dppf = double(view.width / info.bWidth);
  145. const double viewxf = double(view.x);
  146. __m256d viewx = { viewxf, viewxf, viewxf, viewxf };
  147. __m256d dpp = { dppf, dppf, dppf, dppf };
  148. T jX = mnd::convert<T>(info.juliaX);
  149. T jY = mnd::convert<T>(info.juliaY);
  150. __m256d juliaX = { jX, jX, jX, jX };
  151. __m256d juliaY = { jY, jY, jY, jY };
  152. #if defined(_OPENMP)
  153. if constexpr(parallel)
  154. omp_set_num_threads(omp_get_num_procs());
  155. # pragma omp parallel for schedule(static, 1) if (parallel)
  156. #endif
  157. for (long j = 0; j < info.bHeight; j++) {
  158. T y = T(view.y + T(j) * view.height / info.bHeight);
  159. __m256d ys = { y, y, y, y };
  160. for (long i = 0; i < info.bWidth; i += 8) {
  161. __m256d pixc = { double(i), double(i + 1), double(i + 2), double(i + 3) };
  162. __m256d pixc2 = { double(i + 4), double(i + 5), double(i + 6), double(i + 7) };
  163. __m256d xs = _mm256_add_pd(_mm256_mul_pd(dpp, pixc), viewx);
  164. __m256d xs2 = _mm256_add_pd(_mm256_mul_pd(dpp, pixc2), viewx);
  165. int itRes[4] = { 0, 0, 0, 0 };
  166. __m256d threshold = { 16.0, 16.0, 16.0, 16.0 };
  167. __m256d counter = { 0, 0, 0, 0 };
  168. __m256d adder = { 1, 1, 1, 1 };
  169. __m256d counter2 = { 0, 0, 0, 0 };
  170. __m256d adder2 = { 1, 1, 1, 1 };
  171. __m256d resultsa = { 0, 0, 0, 0 };
  172. __m256d resultsb = { 0, 0, 0, 0 };
  173. __m256d resultsa2 = { 0, 0, 0, 0 };
  174. __m256d resultsb2 = { 0, 0, 0, 0 };
  175. __m256d a = xs;
  176. __m256d b = ys;
  177. __m256d a2 = xs2;
  178. __m256d b2 = ys;
  179. __m256d cx = info.julia ? juliaX : xs;
  180. __m256d cx2 = info.julia ? juliaX : xs2;
  181. __m256d cy = info.julia ? juliaY : ys;
  182. if (info.smooth) {
  183. for (int k = 0; k < info.maxIter; k++) {
  184. __m256d aa = _mm256_mul_pd(a, a);
  185. __m256d aa2 = _mm256_mul_pd(a2, a2);
  186. __m256d bb = _mm256_mul_pd(b, b);
  187. __m256d bb2 = _mm256_mul_pd(b2, b2);
  188. __m256d abab = _mm256_mul_pd(a, b); abab = _mm256_add_pd(abab, abab);
  189. __m256d abab2 = _mm256_mul_pd(a2, b2); abab2 = _mm256_add_pd(abab2, abab2);
  190. a = _mm256_add_pd(_mm256_sub_pd(aa, bb), cx);
  191. a2 = _mm256_add_pd(_mm256_sub_pd(aa2, bb2), cx2);
  192. b = _mm256_add_pd(abab, cy);
  193. b2 = _mm256_add_pd(abab2, cy);
  194. __m256d cmp = _mm256_cmp_pd(_mm256_add_pd(aa, bb), threshold, _CMP_LE_OQ);
  195. __m256d cmp2 = _mm256_cmp_pd(_mm256_add_pd(aa2, bb2), threshold, _CMP_LE_OQ);
  196. resultsa = _mm256_or_pd(_mm256_andnot_pd(cmp, resultsa), _mm256_and_pd(cmp, a));
  197. resultsb = _mm256_or_pd(_mm256_andnot_pd(cmp, resultsb), _mm256_and_pd(cmp, b));
  198. resultsa2 = _mm256_or_pd(_mm256_andnot_pd(cmp2, resultsa2), _mm256_and_pd(cmp2, a2));
  199. resultsb2 = _mm256_or_pd(_mm256_andnot_pd(cmp2, resultsb2), _mm256_and_pd(cmp2, b2));
  200. adder = _mm256_and_pd(adder, cmp);
  201. counter = _mm256_add_pd(counter, adder);
  202. adder2 = _mm256_and_pd(adder2, cmp2);
  203. counter2 = _mm256_add_pd(counter2, adder2);
  204. if ((k & 0x7) == 0 && _mm256_testz_si256(_mm256_castpd_si256(cmp), _mm256_castpd_si256(cmp)) != 0 &&
  205. _mm256_testz_si256(_mm256_castpd_si256(cmp2), _mm256_castpd_si256(cmp2)) != 0) {
  206. break;
  207. }
  208. }
  209. }
  210. else {
  211. for (int k = 0; k < info.maxIter; k++) {
  212. __m256d aa = _mm256_mul_pd(a, a);
  213. __m256d aa2 = _mm256_mul_pd(a2, a2);
  214. __m256d bb = _mm256_mul_pd(b, b);
  215. __m256d bb2 = _mm256_mul_pd(b2, b2);
  216. __m256d abab = _mm256_mul_pd(a, b); abab = _mm256_add_pd(abab, abab);
  217. __m256d abab2 = _mm256_mul_pd(a2, b2); abab2 = _mm256_add_pd(abab2, abab2);
  218. a = _mm256_add_pd(_mm256_sub_pd(aa, bb), cx);
  219. a2 = _mm256_add_pd(_mm256_sub_pd(aa2, bb2), cx2);
  220. b = _mm256_add_pd(abab, cy);
  221. b2 = _mm256_add_pd(abab2, cy);
  222. __m256d cmp = _mm256_cmp_pd(_mm256_add_pd(aa, bb), threshold, _CMP_LE_OQ);
  223. __m256d cmp2 = _mm256_cmp_pd(_mm256_add_pd(aa2, bb2), threshold, _CMP_LE_OQ);
  224. adder = _mm256_and_pd(adder, cmp);
  225. counter = _mm256_add_pd(counter, adder);
  226. adder2 = _mm256_and_pd(adder2, cmp2);
  227. counter2 = _mm256_add_pd(counter2, adder2);
  228. if ((k & 0x7) == 0 && _mm256_testz_si256(_mm256_castpd_si256(cmp), _mm256_castpd_si256(cmp)) != 0 &&
  229. _mm256_testz_si256(_mm256_castpd_si256(cmp2), _mm256_castpd_si256(cmp2)) != 0) {
  230. break;
  231. }
  232. }
  233. }
  234. auto alignVec = [](double* data) -> double* {
  235. void* aligned = data;
  236. ::size_t length = 64;
  237. std::align(32, 4 * sizeof(double), aligned, length);
  238. return static_cast<double*>(aligned);
  239. };
  240. double resData[8];
  241. double* ftRes = alignVec(resData);
  242. double* resa = (double*) &resultsa;
  243. double* resb = (double*) &resultsb;
  244. _mm256_store_pd(ftRes, counter);
  245. for (int k = 0; k < 4 && i + k < info.bWidth; k++) {
  246. if (info.smooth)
  247. data[i + k + j * info.bWidth] = ftRes[k] <= 0 ? float(info.maxIter) :
  248. ftRes[k] >= info.maxIter ? float(info.maxIter) :
  249. float(((float)ftRes[k]) + 1 - ::log(::log(resa[k] * resa[k] + resb[k] * resb[k]) / 2) / ::log(2.0f));
  250. else
  251. data[i + k + j * info.bWidth] = ftRes[k] > 0 ? float(ftRes[k]) : info.maxIter;
  252. }
  253. resa = (double*) &resultsa2;
  254. resb = (double*) &resultsb2;
  255. _mm256_store_pd(ftRes, counter2);
  256. i += 4;
  257. for (int k = 0; k < 4 && i + k < info.bWidth; k++) {
  258. if (info.smooth)
  259. data[i + k + j * info.bWidth] = ftRes[k] <= 0 ? float(info.maxIter) :
  260. ftRes[k] >= info.maxIter ? float(info.maxIter) :
  261. float(((float)ftRes[k]) + 1 - ::log(::log(resa[k] * resa[k] + resb[k] * resb[k]) / 2) / ::log(2.0f));
  262. else
  263. data[i + k + j * info.bWidth] = ftRes[k] > 0 ? float(ftRes[k]) : info.maxIter;
  264. }
  265. i -= 4;
  266. }
  267. }
  268. }
  269. struct VecPair
  270. {
  271. __m256d a;
  272. __m256d b;
  273. };
  274. static inline VecPair quickTwoSum(__m256d a, __m256d b)
  275. {
  276. __m256d s = _mm256_add_pd(a, b);
  277. __m256d e = _mm256_sub_pd(b, _mm256_sub_pd(s, a));
  278. return { s, e };
  279. }
  280. static inline VecPair quickTwoDiff(__m256d a, __m256d b)
  281. {
  282. __m256d s = _mm256_sub_pd(a, b);
  283. __m256d e = _mm256_sub_pd(_mm256_sub_pd(a, s), b);
  284. return { s, e };
  285. }
  286. static inline VecPair twoSum(__m256d a, __m256d b)
  287. {
  288. __m256d s = _mm256_add_pd(a, b);
  289. __m256d bb = _mm256_sub_pd(s, a);
  290. __m256d e = _mm256_add_pd(_mm256_sub_pd(a, _mm256_sub_pd(s, bb)), _mm256_sub_pd(b, bb));
  291. return { s, e };
  292. }
  293. static inline VecPair twoDiff(__m256d a, __m256d b)
  294. {
  295. __m256d s = _mm256_sub_pd(a, b);
  296. __m256d bb = _mm256_sub_pd(s, a);
  297. __m256d e = _mm256_sub_pd(_mm256_sub_pd(a, _mm256_sub_pd(s, bb)), _mm256_add_pd(b, bb));
  298. return { s, e };
  299. }
  300. static inline VecPair split(__m256d a)
  301. {
  302. /*
  303. // -- this should never happen when doing mandelbrot calculations,
  304. // so we omit this check.
  305. if (a > _QD_SPLIT_THRESH || a < -_QD_SPLIT_THRESH) {
  306. a *= 3.7252902984619140625e-09; // 2^-28
  307. temp = _QD_SPLITTER * a;
  308. hi = temp - (temp - a);
  309. lo = a - hi;
  310. hi *= 268435456.0; // 2^28
  311. lo *= 268435456.0; // 2^28
  312. } else {
  313. temp = _QD_SPLITTER * a;
  314. hi = temp - (temp - a);
  315. lo = a - hi;
  316. }
  317. */
  318. static const __m256d SPLITTER = { 134217729.0, 134217729.0, 134217729.0, 134217729.0 };
  319. __m256d temp = _mm256_mul_pd(SPLITTER, a);
  320. __m256d hi = _mm256_sub_pd(temp, _mm256_sub_pd(temp, a));
  321. __m256d lo = _mm256_sub_pd(a, hi);
  322. return { hi, lo };
  323. }
  324. static inline VecPair twoProd(__m256d a, __m256d b)
  325. {
  326. __m256d p = _mm256_mul_pd(a, b);
  327. auto[a_hi, a_lo] = split(a);
  328. auto[b_hi, b_lo] = split(b);
  329. __m256d err = _mm256_add_pd(_mm256_add_pd(_mm256_sub_pd(_mm256_mul_pd(a_hi, b_hi), p), _mm256_add_pd(_mm256_mul_pd(a_hi, b_lo), _mm256_mul_pd(a_lo, b_hi))), _mm256_mul_pd(a_lo, b_lo));
  330. return { p, err };
  331. }
  332. struct AvxDoubleDouble
  333. {
  334. __m256d x[2];
  335. inline AvxDoubleDouble(__m256d a, __m256d b) :
  336. x{ a, b }
  337. {}
  338. inline AvxDoubleDouble(double a, double b) :
  339. x{ _mm256_set1_pd(a), _mm256_set1_pd(b) }
  340. {}
  341. inline AvxDoubleDouble operator + (const AvxDoubleDouble& sm) const
  342. {
  343. auto[s, e] = twoSum(x[0], sm.x[0]);
  344. e = _mm256_add_pd(e, _mm256_add_pd(x[1], sm.x[1]));
  345. auto[r1, r2] = quickTwoSum(s, e);
  346. return AvxDoubleDouble{ r1, r2 };
  347. }
  348. inline AvxDoubleDouble operator - (const AvxDoubleDouble& sm) const
  349. {
  350. auto[s, e] = twoDiff(x[0], sm.x[0]);
  351. e = _mm256_add_pd(e, x[1]);
  352. e = _mm256_sub_pd(e, sm.x[1]);
  353. auto[r1, r2] = quickTwoSum(s, e);
  354. return AvxDoubleDouble{ r1, r2 };
  355. }
  356. inline AvxDoubleDouble operator * (const AvxDoubleDouble& sm) const
  357. {
  358. auto[p1, p2] = twoProd(this->x[0], sm.x[0]);
  359. p2 = _mm256_add_pd(p2,
  360. _mm256_add_pd(_mm256_mul_pd(sm.x[1], x[0]), _mm256_mul_pd(sm.x[0], x[1])) );
  361. auto[r1, r2] = quickTwoSum(p1, p2);
  362. return AvxDoubleDouble{ r1, r2 };
  363. }
  364. };
  365. template<bool parallel>
  366. void CpuGenerator<mnd::DoubleDouble, mnd::X86_AVX, parallel>::generate(const mnd::MandelInfo& info, float* data)
  367. {
  368. const MandelViewport& view = info.view;
  369. using T = LightDoubleDouble;
  370. T viewx = mnd::convert<T>(view.x);
  371. T viewy = mnd::convert<T>(view.y);
  372. T wpp = mnd::convert<T>(view.width / info.bWidth);
  373. T hpp = mnd::convert<T>(view.height / info.bHeight);
  374. T jX = mnd::convert<T>(info.juliaX);
  375. T jY = mnd::convert<T>(info.juliaY);
  376. AvxDoubleDouble juliaX = { jX[0], jX[1] };
  377. AvxDoubleDouble juliaY = { jY[0], jY[1] };
  378. #if defined(_OPENMP)
  379. if constexpr(parallel)
  380. omp_set_num_threads(omp_get_num_procs());
  381. # pragma omp parallel for schedule(static, 1) if (parallel)
  382. #endif
  383. for (long j = 0; j < info.bHeight; j++) {
  384. T y = viewy + T(double(j)) * hpp;
  385. AvxDoubleDouble ys{ y[0], y[1] };
  386. for (long i = 0; i < info.bWidth; i += 4) {
  387. T x1 = viewx + T(double(i)) * wpp;
  388. T x2 = x1 + wpp;
  389. T x3 = x2 + wpp;
  390. T x4 = x3 + wpp;
  391. __m256d x0s = {
  392. x1[0], x2[0], x3[0], x4[0],
  393. };
  394. __m256d x1s = {
  395. x1[1], x2[1], x3[1], x4[1],
  396. };
  397. AvxDoubleDouble xs{ x0s, x1s };
  398. AvxDoubleDouble cx = info.julia ? juliaX : xs;
  399. AvxDoubleDouble cy = info.julia ? juliaY : ys;
  400. int itRes[4] = { 0, 0, 0, 0 };
  401. __m256d threshold = { 16.0, 16.0, 16.0, 16.0 };
  402. __m256d counter = { 0, 0, 0, 0 };
  403. __m256d adder = { 1, 1, 1, 1 };
  404. AvxDoubleDouble a = xs;
  405. AvxDoubleDouble b = ys;
  406. __m256d resultsa = _mm256_set1_pd(0);
  407. __m256d resultsb = _mm256_set1_pd(0);
  408. for (int k = 0; k < info.maxIter; k++) {
  409. AvxDoubleDouble aa = a * a;
  410. AvxDoubleDouble bb = b * b;
  411. AvxDoubleDouble abab = a * b; abab = abab + abab;
  412. a = aa - bb + cx;
  413. b = abab + cy;
  414. __m256d cmp = _mm256_cmp_pd(_mm256_add_pd(aa.x[0], bb.x[0]), threshold, _CMP_LE_OQ);
  415. if (info.smooth) {
  416. resultsa = _mm256_or_pd(_mm256_andnot_pd(cmp, resultsa), _mm256_and_pd(cmp, a.x[0]));
  417. resultsb = _mm256_or_pd(_mm256_andnot_pd(cmp, resultsb), _mm256_and_pd(cmp, b.x[0]));
  418. }
  419. adder = _mm256_and_pd(adder, cmp);
  420. counter = _mm256_add_pd(counter, adder);
  421. if (_mm256_testz_si256(_mm256_castpd_si256(cmp), _mm256_castpd_si256(cmp)) != 0) {
  422. break;
  423. }
  424. }
  425. auto alignVec = [](double* data) -> double* {
  426. void* aligned = data;
  427. ::size_t length = 64;
  428. std::align(32, 4 * sizeof(double), aligned, length);
  429. return static_cast<double*>(aligned);
  430. };
  431. double resData[8];
  432. double* ftRes = alignVec(resData);
  433. double* resa = (double*) &resultsa;
  434. double* resb = (double*) &resultsb;
  435. _mm256_store_pd(ftRes, counter);
  436. for (int k = 0; k < 4 && i + k < info.bWidth; k++) {
  437. if (info.smooth)
  438. data[i + k + j * info.bWidth] = float(ftRes[k] <= 0 ? info.maxIter :
  439. ftRes[k] >= info.maxIter ? info.maxIter :
  440. ((float)ftRes[k]) + 1 - ::log(::log(float(resa[k] * resa[k] + resb[k] * resb[k])) / 2) / ::log(2.0f));
  441. else
  442. data[i + k + j * info.bWidth] = ftRes[k] > 0 ? float(ftRes[k]) : info.maxIter;
  443. }
  444. }
  445. }
  446. }