1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039 |
- /*
- * include/qd_inline.h
- *
- * This work was supported by the Director, Office of Science, Division
- * of Mathematical, Information, and Computational Sciences of the
- * U.S. Department of Energy under contract number DE-AC03-76SF00098.
- *
- * Copyright (c) 2000-2001
- *
- * Contains small functions (suitable for inlining) in the quad-double
- * arithmetic package.
- */
- #ifndef _QD_QD_INLINE_H
- #define _QD_QD_INLINE_H
- #include <cmath>
- #include <qd/inline.h>
- #ifndef QD_INLINE
- #define inline
- #endif
- /********** Constructors **********/
- inline qd_real::qd_real(double x0, double x1, double x2, double x3) {
- x[0] = x0;
- x[1] = x1;
- x[2] = x2;
- x[3] = x3;
- }
- inline qd_real::qd_real(const double *xx) {
- x[0] = xx[0];
- x[1] = xx[1];
- x[2] = xx[2];
- x[3] = xx[3];
- }
- inline qd_real::qd_real(double x0) {
- x[0] = x0;
- x[1] = x[2] = x[3] = 0.0;
- }
- inline qd_real::qd_real() {
- x[0] = 0.0;
- x[1] = 0.0;
- x[2] = 0.0;
- x[3] = 0.0;
- }
- inline qd_real::qd_real(const dd_real &a) {
- x[0] = a._hi();
- x[1] = a._lo();
- x[2] = x[3] = 0.0;
- }
- inline qd_real::qd_real(int i) {
- x[0] = static_cast<double>(i);
- x[1] = x[2] = x[3] = 0.0;
- }
- /********** Accessors **********/
- inline double qd_real::operator[](int i) const {
- return x[i];
- }
- inline double &qd_real::operator[](int i) {
- return x[i];
- }
- inline bool qd_real::isnan() const {
- return QD_ISNAN(x[0]) || QD_ISNAN(x[1]) || QD_ISNAN(x[2]) || QD_ISNAN(x[3]);
- }
- /********** Renormalization **********/
- namespace qd {
- inline void quick_renorm(double &c0, double &c1,
- double &c2, double &c3, double &c4) {
- double t0, t1, t2, t3;
- double s;
- s = qd::quick_two_sum(c3, c4, t3);
- s = qd::quick_two_sum(c2, s , t2);
- s = qd::quick_two_sum(c1, s , t1);
- c0 = qd::quick_two_sum(c0, s , t0);
- s = qd::quick_two_sum(t2, t3, t2);
- s = qd::quick_two_sum(t1, s , t1);
- c1 = qd::quick_two_sum(t0, s , t0);
- s = qd::quick_two_sum(t1, t2, t1);
- c2 = qd::quick_two_sum(t0, s , t0);
-
- c3 = t0 + t1;
- }
- inline void renorm(double &c0, double &c1,
- double &c2, double &c3) {
- double s0, s1, s2 = 0.0, s3 = 0.0;
- if (QD_ISINF(c0)) return;
- s0 = qd::quick_two_sum(c2, c3, c3);
- s0 = qd::quick_two_sum(c1, s0, c2);
- c0 = qd::quick_two_sum(c0, s0, c1);
- s0 = c0;
- s1 = c1;
- if (s1 != 0.0) {
- s1 = qd::quick_two_sum(s1, c2, s2);
- if (s2 != 0.0)
- s2 = qd::quick_two_sum(s2, c3, s3);
- else
- s1 = qd::quick_two_sum(s1, c3, s2);
- } else {
- s0 = qd::quick_two_sum(s0, c2, s1);
- if (s1 != 0.0)
- s1 = qd::quick_two_sum(s1, c3, s2);
- else
- s0 = qd::quick_two_sum(s0, c3, s1);
- }
- c0 = s0;
- c1 = s1;
- c2 = s2;
- c3 = s3;
- }
- inline void renorm(double &c0, double &c1,
- double &c2, double &c3, double &c4) {
- double s0, s1, s2 = 0.0, s3 = 0.0;
- if (QD_ISINF(c0)) return;
- s0 = qd::quick_two_sum(c3, c4, c4);
- s0 = qd::quick_two_sum(c2, s0, c3);
- s0 = qd::quick_two_sum(c1, s0, c2);
- c0 = qd::quick_two_sum(c0, s0, c1);
- s0 = c0;
- s1 = c1;
- if (s1 != 0.0) {
- s1 = qd::quick_two_sum(s1, c2, s2);
- if (s2 != 0.0) {
- s2 = qd::quick_two_sum(s2, c3, s3);
- if (s3 != 0.0)
- s3 += c4;
- else
- s2 = qd::quick_two_sum(s2, c4, s3);
- } else {
- s1 = qd::quick_two_sum(s1, c3, s2);
- if (s2 != 0.0)
- s2 = qd::quick_two_sum(s2, c4, s3);
- else
- s1 = qd::quick_two_sum(s1, c4, s2);
- }
- } else {
- s0 = qd::quick_two_sum(s0, c2, s1);
- if (s1 != 0.0) {
- s1 = qd::quick_two_sum(s1, c3, s2);
- if (s2 != 0.0)
- s2 = qd::quick_two_sum(s2, c4, s3);
- else
- s1 = qd::quick_two_sum(s1, c4, s2);
- } else {
- s0 = qd::quick_two_sum(s0, c3, s1);
- if (s1 != 0.0)
- s1 = qd::quick_two_sum(s1, c4, s2);
- else
- s0 = qd::quick_two_sum(s0, c4, s1);
- }
- }
- c0 = s0;
- c1 = s1;
- c2 = s2;
- c3 = s3;
- }
- }
- inline void qd_real::renorm() {
- qd::renorm(x[0], x[1], x[2], x[3]);
- }
- inline void qd_real::renorm(double &e) {
- qd::renorm(x[0], x[1], x[2], x[3], e);
- }
- /********** Additions ************/
- namespace qd {
- inline void three_sum(double &a, double &b, double &c) {
- double t1, t2, t3;
- t1 = qd::two_sum(a, b, t2);
- a = qd::two_sum(c, t1, t3);
- b = qd::two_sum(t2, t3, c);
- }
- inline void three_sum2(double &a, double &b, double &c) {
- double t1, t2, t3;
- t1 = qd::two_sum(a, b, t2);
- a = qd::two_sum(c, t1, t3);
- b = t2 + t3;
- }
- }
- /* quad-double + double */
- inline qd_real operator+(const qd_real &a, double b) {
- double c0, c1, c2, c3;
- double e;
- c0 = qd::two_sum(a[0], b, e);
- c1 = qd::two_sum(a[1], e, e);
- c2 = qd::two_sum(a[2], e, e);
- c3 = qd::two_sum(a[3], e, e);
- qd::renorm(c0, c1, c2, c3, e);
- return qd_real(c0, c1, c2, c3);
- }
- /* quad-double + double-double */
- inline qd_real operator+(const qd_real &a, const dd_real &b) {
- double s0, s1, s2, s3;
- double t0, t1;
- s0 = qd::two_sum(a[0], b._hi(), t0);
- s1 = qd::two_sum(a[1], b._lo(), t1);
- s1 = qd::two_sum(s1, t0, t0);
- s2 = a[2];
- qd::three_sum(s2, t0, t1);
- s3 = qd::two_sum(t0, a[3], t0);
- t0 += t1;
- qd::renorm(s0, s1, s2, s3, t0);
- return qd_real(s0, s1, s2, s3);
- }
- /* double + quad-double */
- inline qd_real operator+(double a, const qd_real &b) {
- return (b + a);
- }
- /* double-double + quad-double */
- inline qd_real operator+(const dd_real &a, const qd_real &b) {
- return (b + a);
- }
- namespace qd {
- /* s = quick_three_accum(a, b, c) adds c to the dd-pair (a, b).
- * If the result does not fit in two doubles, then the sum is
- * output into s and (a,b) contains the remainder. Otherwise
- * s is zero and (a,b) contains the sum. */
- inline double quick_three_accum(double &a, double &b, double c) {
- double s;
- bool za, zb;
- s = qd::two_sum(b, c, b);
- s = qd::two_sum(a, s, a);
- za = (a != 0.0);
- zb = (b != 0.0);
- if (za && zb)
- return s;
- if (!zb) {
- b = a;
- a = s;
- } else {
- a = s;
- }
- return 0.0;
- }
- }
- inline qd_real qd_real::ieee_add(const qd_real &a, const qd_real &b) {
- int i, j, k;
- double s, t;
- double u, v; /* double-length accumulator */
- double x[4] = {0.0, 0.0, 0.0, 0.0};
-
- i = j = k = 0;
- if (std::abs(a[i]) > std::abs(b[j]))
- u = a[i++];
- else
- u = b[j++];
- if (std::abs(a[i]) > std::abs(b[j]))
- v = a[i++];
- else
- v = b[j++];
- u = qd::quick_two_sum(u, v, v);
-
- while (k < 4) {
- if (i >= 4 && j >= 4) {
- x[k] = u;
- if (k < 3)
- x[++k] = v;
- break;
- }
- if (i >= 4)
- t = b[j++];
- else if (j >= 4)
- t = a[i++];
- else if (std::abs(a[i]) > std::abs(b[j])) {
- t = a[i++];
- } else
- t = b[j++];
- s = qd::quick_three_accum(u, v, t);
- if (s != 0.0) {
- x[k++] = s;
- }
- }
- /* add the rest. */
- for (k = i; k < 4; k++)
- x[3] += a[k];
- for (k = j; k < 4; k++)
- x[3] += b[k];
- qd::renorm(x[0], x[1], x[2], x[3]);
- return qd_real(x[0], x[1], x[2], x[3]);
- }
- inline qd_real qd_real::sloppy_add(const qd_real &a, const qd_real &b) {
- /*
- double s0, s1, s2, s3;
- double t0, t1, t2, t3;
-
- s0 = qd::two_sum(a[0], b[0], t0);
- s1 = qd::two_sum(a[1], b[1], t1);
- s2 = qd::two_sum(a[2], b[2], t2);
- s3 = qd::two_sum(a[3], b[3], t3);
- s1 = qd::two_sum(s1, t0, t0);
- qd::three_sum(s2, t0, t1);
- qd::three_sum2(s3, t0, t2);
- t0 = t0 + t1 + t3;
- qd::renorm(s0, s1, s2, s3, t0);
- return qd_real(s0, s1, s2, s3, t0);
- */
- /* Same as above, but addition re-organized to minimize
- data dependency ... unfortunately some compilers are
- not very smart to do this automatically */
- double s0, s1, s2, s3;
- double t0, t1, t2, t3;
- double v0, v1, v2, v3;
- double u0, u1, u2, u3;
- double w0, w1, w2, w3;
- s0 = a[0] + b[0];
- s1 = a[1] + b[1];
- s2 = a[2] + b[2];
- s3 = a[3] + b[3];
- v0 = s0 - a[0];
- v1 = s1 - a[1];
- v2 = s2 - a[2];
- v3 = s3 - a[3];
- u0 = s0 - v0;
- u1 = s1 - v1;
- u2 = s2 - v2;
- u3 = s3 - v3;
- w0 = a[0] - u0;
- w1 = a[1] - u1;
- w2 = a[2] - u2;
- w3 = a[3] - u3;
- u0 = b[0] - v0;
- u1 = b[1] - v1;
- u2 = b[2] - v2;
- u3 = b[3] - v3;
- t0 = w0 + u0;
- t1 = w1 + u1;
- t2 = w2 + u2;
- t3 = w3 + u3;
- s1 = qd::two_sum(s1, t0, t0);
- qd::three_sum(s2, t0, t1);
- qd::three_sum2(s3, t0, t2);
- t0 = t0 + t1 + t3;
- /* renormalize */
- qd::renorm(s0, s1, s2, s3, t0);
- return qd_real(s0, s1, s2, s3);
- }
- /* quad-double + quad-double */
- inline qd_real operator+(const qd_real &a, const qd_real &b) {
- #ifndef QD_IEEE_ADD
- return qd_real::sloppy_add(a, b);
- #else
- return qd_real::ieee_add(a, b);
- #endif
- }
- /********** Self-Additions ************/
- /* quad-double += double */
- inline qd_real &qd_real::operator+=(double a) {
- *this = *this + a;
- return *this;
- }
- /* quad-double += double-double */
- inline qd_real &qd_real::operator+=(const dd_real &a) {
- *this = *this + a;
- return *this;
- }
- /* quad-double += quad-double */
- inline qd_real &qd_real::operator+=(const qd_real &a) {
- *this = *this + a;
- return *this;
- }
- /********** Unary Minus **********/
- inline qd_real qd_real::operator-() const {
- return qd_real(-x[0], -x[1], -x[2], -x[3]);
- }
- /********** Subtractions **********/
- inline qd_real operator-(const qd_real &a, double b) {
- return (a + (-b));
- }
- inline qd_real operator-(double a, const qd_real &b) {
- return (a + (-b));
- }
- inline qd_real operator-(const qd_real &a, const dd_real &b) {
- return (a + (-b));
- }
- inline qd_real operator-(const dd_real &a, const qd_real &b) {
- return (a + (-b));
- }
- inline qd_real operator-(const qd_real &a, const qd_real &b) {
- return (a + (-b));
- }
- /********** Self-Subtractions **********/
- inline qd_real &qd_real::operator-=(double a) {
- return ((*this) += (-a));
- }
- inline qd_real &qd_real::operator-=(const dd_real &a) {
- return ((*this) += (-a));
- }
- inline qd_real &qd_real::operator-=(const qd_real &a) {
- return ((*this) += (-a));
- }
- inline qd_real operator*(double a, const qd_real &b) {
- return (b * a);
- }
- inline qd_real operator*(const dd_real &a, const qd_real &b) {
- return (b * a);
- }
- inline qd_real mul_pwr2(const qd_real &a, double b) {
- return qd_real(a[0] * b, a[1] * b, a[2] * b, a[3] * b);
- }
- /********** Multiplications **********/
- inline qd_real operator*(const qd_real &a, double b) {
- double p0, p1, p2, p3;
- double q0, q1, q2;
- double s0, s1, s2, s3, s4;
- p0 = qd::two_prod(a[0], b, q0);
- p1 = qd::two_prod(a[1], b, q1);
- p2 = qd::two_prod(a[2], b, q2);
- p3 = a[3] * b;
- s0 = p0;
- s1 = qd::two_sum(q0, p1, s2);
- qd::three_sum(s2, q1, p2);
- qd::three_sum2(q1, q2, p3);
- s3 = q1;
- s4 = q2 + p2;
- qd::renorm(s0, s1, s2, s3, s4);
- return qd_real(s0, s1, s2, s3);
- }
- /* quad-double * double-double */
- /* a0 * b0 0
- a0 * b1 1
- a1 * b0 2
- a1 * b1 3
- a2 * b0 4
- a2 * b1 5
- a3 * b0 6
- a3 * b1 7 */
- inline qd_real operator*(const qd_real &a, const dd_real &b) {
- double p0, p1, p2, p3, p4;
- double q0, q1, q2, q3, q4;
- double s0, s1, s2;
- double t0, t1;
- p0 = qd::two_prod(a[0], b._hi(), q0);
- p1 = qd::two_prod(a[0], b._lo(), q1);
- p2 = qd::two_prod(a[1], b._hi(), q2);
- p3 = qd::two_prod(a[1], b._lo(), q3);
- p4 = qd::two_prod(a[2], b._hi(), q4);
-
- qd::three_sum(p1, p2, q0);
-
- /* Five-Three-Sum */
- qd::three_sum(p2, p3, p4);
- q1 = qd::two_sum(q1, q2, q2);
- s0 = qd::two_sum(p2, q1, t0);
- s1 = qd::two_sum(p3, q2, t1);
- s1 = qd::two_sum(s1, t0, t0);
- s2 = t0 + t1 + p4;
- p2 = s0;
- p3 = a[2] * b._hi() + a[3] * b._lo() + q3 + q4;
- qd::three_sum2(p3, q0, s1);
- p4 = q0 + s2;
- qd::renorm(p0, p1, p2, p3, p4);
- return qd_real(p0, p1, p2, p3);
- }
- /* quad-double * quad-double */
- /* a0 * b0 0
- a0 * b1 1
- a1 * b0 2
- a0 * b2 3
- a1 * b1 4
- a2 * b0 5
- a0 * b3 6
- a1 * b2 7
- a2 * b1 8
- a3 * b0 9 */
- inline qd_real qd_real::sloppy_mul(const qd_real &a, const qd_real &b) {
- double p0, p1, p2, p3, p4, p5;
- double q0, q1, q2, q3, q4, q5;
- double t0, t1;
- double s0, s1, s2;
- p0 = qd::two_prod(a[0], b[0], q0);
- p1 = qd::two_prod(a[0], b[1], q1);
- p2 = qd::two_prod(a[1], b[0], q2);
- p3 = qd::two_prod(a[0], b[2], q3);
- p4 = qd::two_prod(a[1], b[1], q4);
- p5 = qd::two_prod(a[2], b[0], q5);
- /* Start Accumulation */
- qd::three_sum(p1, p2, q0);
- /* Six-Three Sum of p2, q1, q2, p3, p4, p5. */
- qd::three_sum(p2, q1, q2);
- qd::three_sum(p3, p4, p5);
- /* compute (s0, s1, s2) = (p2, q1, q2) + (p3, p4, p5). */
- s0 = qd::two_sum(p2, p3, t0);
- s1 = qd::two_sum(q1, p4, t1);
- s2 = q2 + p5;
- s1 = qd::two_sum(s1, t0, t0);
- s2 += (t0 + t1);
- /* O(eps^3) order terms */
- s1 += a[0]*b[3] + a[1]*b[2] + a[2]*b[1] + a[3]*b[0] + q0 + q3 + q4 + q5;
- qd::renorm(p0, p1, s0, s1, s2);
- return qd_real(p0, p1, s0, s1);
- }
- inline qd_real qd_real::accurate_mul(const qd_real &a, const qd_real &b) {
- double p0, p1, p2, p3, p4, p5;
- double q0, q1, q2, q3, q4, q5;
- double p6, p7, p8, p9;
- double q6, q7, q8, q9;
- double r0, r1;
- double t0, t1;
- double s0, s1, s2;
- p0 = qd::two_prod(a[0], b[0], q0);
- p1 = qd::two_prod(a[0], b[1], q1);
- p2 = qd::two_prod(a[1], b[0], q2);
- p3 = qd::two_prod(a[0], b[2], q3);
- p4 = qd::two_prod(a[1], b[1], q4);
- p5 = qd::two_prod(a[2], b[0], q5);
- /* Start Accumulation */
- qd::three_sum(p1, p2, q0);
- /* Six-Three Sum of p2, q1, q2, p3, p4, p5. */
- qd::three_sum(p2, q1, q2);
- qd::three_sum(p3, p4, p5);
- /* compute (s0, s1, s2) = (p2, q1, q2) + (p3, p4, p5). */
- s0 = qd::two_sum(p2, p3, t0);
- s1 = qd::two_sum(q1, p4, t1);
- s2 = q2 + p5;
- s1 = qd::two_sum(s1, t0, t0);
- s2 += (t0 + t1);
- /* O(eps^3) order terms */
- p6 = qd::two_prod(a[0], b[3], q6);
- p7 = qd::two_prod(a[1], b[2], q7);
- p8 = qd::two_prod(a[2], b[1], q8);
- p9 = qd::two_prod(a[3], b[0], q9);
- /* Nine-Two-Sum of q0, s1, q3, q4, q5, p6, p7, p8, p9. */
- q0 = qd::two_sum(q0, q3, q3);
- q4 = qd::two_sum(q4, q5, q5);
- p6 = qd::two_sum(p6, p7, p7);
- p8 = qd::two_sum(p8, p9, p9);
- /* Compute (t0, t1) = (q0, q3) + (q4, q5). */
- t0 = qd::two_sum(q0, q4, t1);
- t1 += (q3 + q5);
- /* Compute (r0, r1) = (p6, p7) + (p8, p9). */
- r0 = qd::two_sum(p6, p8, r1);
- r1 += (p7 + p9);
- /* Compute (q3, q4) = (t0, t1) + (r0, r1). */
- q3 = qd::two_sum(t0, r0, q4);
- q4 += (t1 + r1);
- /* Compute (t0, t1) = (q3, q4) + s1. */
- t0 = qd::two_sum(q3, s1, t1);
- t1 += q4;
- /* O(eps^4) terms -- Nine-One-Sum */
- t1 += a[1] * b[3] + a[2] * b[2] + a[3] * b[1] + q6 + q7 + q8 + q9 + s2;
- qd::renorm(p0, p1, s0, t0, t1);
- return qd_real(p0, p1, s0, t0);
- }
- inline qd_real operator*(const qd_real &a, const qd_real &b) {
- #ifdef QD_SLOPPY_MUL
- return qd_real::sloppy_mul(a, b);
- #else
- return qd_real::accurate_mul(a, b);
- #endif
- }
- /* quad-double ^ 2 = (x0 + x1 + x2 + x3) ^ 2
- = x0 ^ 2 + 2 x0 * x1 + (2 x0 * x2 + x1 ^ 2)
- + (2 x0 * x3 + 2 x1 * x2) */
- inline qd_real sqr(const qd_real &a) {
- double p0, p1, p2, p3, p4, p5;
- double q0, q1, q2, q3;
- double s0, s1;
- double t0, t1;
-
- p0 = qd::two_sqr(a[0], q0);
- p1 = qd::two_prod(2.0 * a[0], a[1], q1);
- p2 = qd::two_prod(2.0 * a[0], a[2], q2);
- p3 = qd::two_sqr(a[1], q3);
- p1 = qd::two_sum(q0, p1, q0);
- q0 = qd::two_sum(q0, q1, q1);
- p2 = qd::two_sum(p2, p3, p3);
- s0 = qd::two_sum(q0, p2, t0);
- s1 = qd::two_sum(q1, p3, t1);
- s1 = qd::two_sum(s1, t0, t0);
- t0 += t1;
- s1 = qd::quick_two_sum(s1, t0, t0);
- p2 = qd::quick_two_sum(s0, s1, t1);
- p3 = qd::quick_two_sum(t1, t0, q0);
- p4 = 2.0 * a[0] * a[3];
- p5 = 2.0 * a[1] * a[2];
- p4 = qd::two_sum(p4, p5, p5);
- q2 = qd::two_sum(q2, q3, q3);
- t0 = qd::two_sum(p4, q2, t1);
- t1 = t1 + p5 + q3;
- p3 = qd::two_sum(p3, t0, p4);
- p4 = p4 + q0 + t1;
- qd::renorm(p0, p1, p2, p3, p4);
- return qd_real(p0, p1, p2, p3);
- }
- /********** Self-Multiplication **********/
- /* quad-double *= double */
- inline qd_real &qd_real::operator*=(double a) {
- *this = (*this * a);
- return *this;
- }
- /* quad-double *= double-double */
- inline qd_real &qd_real::operator*=(const dd_real &a) {
- *this = (*this * a);
- return *this;
- }
- /* quad-double *= quad-double */
- inline qd_real &qd_real::operator*=(const qd_real &a) {
- *this = *this * a;
- return *this;
- }
- inline qd_real operator/ (const qd_real &a, const dd_real &b) {
- #ifdef QD_SLOPPY_DIV
- return qd_real::sloppy_div(a, b);
- #else
- return qd_real::accurate_div(a, b);
- #endif
- }
- inline qd_real operator/(const qd_real &a, const qd_real &b) {
- #ifdef QD_SLOPPY_DIV
- return qd_real::sloppy_div(a, b);
- #else
- return qd_real::accurate_div(a, b);
- #endif
- }
- /* double / quad-double */
- inline qd_real operator/(double a, const qd_real &b) {
- return qd_real(a) / b;
- }
- /* double-double / quad-double */
- inline qd_real operator/(const dd_real &a, const qd_real &b) {
- return qd_real(a) / b;
- }
- /********** Self-Divisions **********/
- /* quad-double /= double */
- inline qd_real &qd_real::operator/=(double a) {
- *this = (*this / a);
- return *this;
- }
- /* quad-double /= double-double */
- inline qd_real &qd_real::operator/=(const dd_real &a) {
- *this = (*this / a);
- return *this;
- }
- /* quad-double /= quad-double */
- inline qd_real &qd_real::operator/=(const qd_real &a) {
- *this = (*this / a);
- return *this;
- }
- /********** Exponentiation **********/
- inline qd_real qd_real::operator^(int n) const {
- return pow(*this, n);
- }
- /********** Miscellaneous **********/
- inline qd_real abs(const qd_real &a) {
- return (a[0] < 0.0) ? -a : a;
- }
- inline qd_real fabs(const qd_real &a) {
- return abs(a);
- }
- /* Quick version. May be off by one when qd is very close
- to the middle of two integers. */
- inline qd_real quick_nint(const qd_real &a) {
- qd_real r = qd_real(qd::nint(a[0]), qd::nint(a[1]),
- qd::nint(a[2]), qd::nint(a[3]));
- r.renorm();
- return r;
- }
- /*********** Assignments ************/
- /* quad-double = double */
- inline qd_real &qd_real::operator=(double a) {
- x[0] = a;
- x[1] = x[2] = x[3] = 0.0;
- return *this;
- }
- /* quad-double = double-double */
- inline qd_real &qd_real::operator=(const dd_real &a) {
- x[0] = a._hi();
- x[1] = a._lo();
- x[2] = x[3] = 0.0;
- return *this;
- }
- /********** Equality Comparison **********/
- inline bool operator==(const qd_real &a, double b) {
- return (a[0] == b && a[1] == 0.0 && a[2] == 0.0 && a[3] == 0.0);
- }
- inline bool operator==(double a, const qd_real &b) {
- return (b == a);
- }
- inline bool operator==(const qd_real &a, const dd_real &b) {
- return (a[0] == b._hi() && a[1] == b._lo() &&
- a[2] == 0.0 && a[3] == 0.0);
- }
- inline bool operator==(const dd_real &a, const qd_real &b) {
- return (b == a);
- }
- inline bool operator==(const qd_real &a, const qd_real &b) {
- return (a[0] == b[0] && a[1] == b[1] &&
- a[2] == b[2] && a[3] == b[3]);
- }
- /********** Less-Than Comparison ***********/
- inline bool operator<(const qd_real &a, double b) {
- return (a[0] < b || (a[0] == b && a[1] < 0.0));
- }
- inline bool operator<(double a, const qd_real &b) {
- return (b > a);
- }
- inline bool operator<(const qd_real &a, const dd_real &b) {
- return (a[0] < b._hi() ||
- (a[0] == b._hi() && (a[1] < b._lo() ||
- (a[1] == b._lo() && a[2] < 0.0))));
- }
- inline bool operator<(const dd_real &a, const qd_real &b) {
- return (b > a);
- }
- inline bool operator<(const qd_real &a, const qd_real &b) {
- return (a[0] < b[0] ||
- (a[0] == b[0] && (a[1] < b[1] ||
- (a[1] == b[1] && (a[2] < b[2] ||
- (a[2] == b[2] && a[3] < b[3]))))));
- }
- /********** Greater-Than Comparison ***********/
- inline bool operator>(const qd_real &a, double b) {
- return (a[0] > b || (a[0] == b && a[1] > 0.0));
- }
- inline bool operator>(double a, const qd_real &b) {
- return (b < a);
- }
- inline bool operator>(const qd_real &a, const dd_real &b) {
- return (a[0] > b._hi() ||
- (a[0] == b._hi() && (a[1] > b._lo() ||
- (a[1] == b._lo() && a[2] > 0.0))));
- }
- inline bool operator>(const dd_real &a, const qd_real &b) {
- return (b < a);
- }
- inline bool operator>(const qd_real &a, const qd_real &b) {
- return (a[0] > b[0] ||
- (a[0] == b[0] && (a[1] > b[1] ||
- (a[1] == b[1] && (a[2] > b[2] ||
- (a[2] == b[2] && a[3] > b[3]))))));
- }
- /********** Less-Than-Or-Equal-To Comparison **********/
- inline bool operator<=(const qd_real &a, double b) {
- return (a[0] < b || (a[0] == b && a[1] <= 0.0));
- }
- inline bool operator<=(double a, const qd_real &b) {
- return (b >= a);
- }
- inline bool operator<=(const qd_real &a, const dd_real &b) {
- return (a[0] < b._hi() ||
- (a[0] == b._hi() && (a[1] < b._lo() ||
- (a[1] == b._lo() && a[2] <= 0.0))));
- }
- inline bool operator<=(const dd_real &a, const qd_real &b) {
- return (b >= a);
- }
- inline bool operator<=(const qd_real &a, const qd_real &b) {
- return (a[0] < b[0] ||
- (a[0] == b[0] && (a[1] < b[1] ||
- (a[1] == b[1] && (a[2] < b[2] ||
- (a[2] == b[2] && a[3] <= b[3]))))));
- }
- /********** Greater-Than-Or-Equal-To Comparison **********/
- inline bool operator>=(const qd_real &a, double b) {
- return (a[0] > b || (a[0] == b && a[1] >= 0.0));
- }
- inline bool operator>=(double a, const qd_real &b) {
- return (b <= a);
- }
- inline bool operator>=(const qd_real &a, const dd_real &b) {
- return (a[0] > b._hi() ||
- (a[0] == b._hi() && (a[1] > b._lo() ||
- (a[1] == b._lo() && a[2] >= 0.0))));
- }
- inline bool operator>=(const dd_real &a, const qd_real &b) {
- return (b <= a);
- }
- inline bool operator>=(const qd_real &a, const qd_real &b) {
- return (a[0] > b[0] ||
- (a[0] == b[0] && (a[1] > b[1] ||
- (a[1] == b[1] && (a[2] > b[2] ||
- (a[2] == b[2] && a[3] >= b[3]))))));
- }
- /********** Not-Equal-To Comparison **********/
- inline bool operator!=(const qd_real &a, double b) {
- return !(a == b);
- }
- inline bool operator!=(double a, const qd_real &b) {
- return !(a == b);
- }
- inline bool operator!=(const qd_real &a, const dd_real &b) {
- return !(a == b);
- }
- inline bool operator!=(const dd_real &a, const qd_real &b) {
- return !(a == b);
- }
- inline bool operator!=(const qd_real &a, const qd_real &b) {
- return !(a == b);
- }
- inline qd_real aint(const qd_real &a) {
- return (a[0] >= 0) ? floor(a) : ceil(a);
- }
- inline bool qd_real::is_zero() const {
- return (x[0] == 0.0);
- }
- inline bool qd_real::is_one() const {
- return (x[0] == 1.0 && x[1] == 0.0 && x[2] == 0.0 && x[3] == 0.0);
- }
- inline bool qd_real::is_positive() const {
- return (x[0] > 0.0);
- }
- inline bool qd_real::is_negative() const {
- return (x[0] < 0.0);
- }
- inline dd_real to_dd_real(const qd_real &a) {
- return dd_real(a[0], a[1]);
- }
- inline double to_double(const qd_real &a) {
- return a[0];
- }
- inline int to_int(const qd_real &a) {
- return static_cast<int>(a[0]);
- }
- inline qd_real inv(const qd_real &qd) {
- return 1.0 / qd;
- }
- inline qd_real max(const qd_real &a, const qd_real &b) {
- return (a > b) ? a : b;
- }
- inline qd_real max(const qd_real &a, const qd_real &b,
- const qd_real &c) {
- return (a > b) ? ((a > c) ? a : c) : ((b > c) ? b : c);
- }
- inline qd_real min(const qd_real &a, const qd_real &b) {
- return (a < b) ? a : b;
- }
- inline qd_real min(const qd_real &a, const qd_real &b,
- const qd_real &c) {
- return (a < b) ? ((a < c) ? a : c) : ((b < c) ? b : c);
- }
- /* Random number generator */
- inline qd_real qd_real::rand() {
- return qdrand();
- }
- inline qd_real ldexp(const qd_real &a, int n) {
- return qd_real(std::ldexp(a[0], n), std::ldexp(a[1], n),
- std::ldexp(a[2], n), std::ldexp(a[3], n));
- }
- #endif /* _QD_QD_INLINE_H */
|