IterationGenerator.cpp 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126
  1. #include "IterationGenerator.h"
  2. #include <omp.h>
  3. using mnd::IterationGenerator;
  4. using mnd::NaiveGenerator;
  5. using mnd::IterationFormula;
  6. IterationGenerator::IterationGenerator(IterationFormula itf,
  7. const mnd::Real& prec) :
  8. mnd::MandelGenerator{ prec },
  9. itf{ std::move(itf) }
  10. {
  11. }
  12. NaiveGenerator::NaiveGenerator(IterationFormula itf,
  13. const mnd::Real& prec) :
  14. IterationGenerator{ std::move(itf), prec }
  15. {
  16. this->itf.optimize();
  17. }
  18. void NaiveGenerator::generate(const mnd::MandelInfo& info, float* data)
  19. {
  20. const MandelViewport& view = info.view;
  21. const bool parallel = true;
  22. using T = double;
  23. T viewx = mnd::convert<T>(view.x);
  24. T viewy = mnd::convert<T>(view.y);
  25. T wpp = mnd::convert<T>(view.width / info.bWidth);
  26. T hpp = mnd::convert<T>(view.height / info.bHeight);
  27. T juliaX = mnd::convert<T>(info.juliaX);
  28. T juliaY = mnd::convert<T>(info.juliaY);
  29. if constexpr (parallel)
  30. omp_set_num_threads(omp_get_num_procs());
  31. #pragma omp parallel for schedule(static, 1) if (parallel)
  32. for (long j = 0; j < info.bHeight; j++) {
  33. T y = viewy + T(double(j)) * hpp;
  34. long i = 0;
  35. for (i; i < info.bWidth; i++) {
  36. T x = viewx + T(double(i)) * wpp;
  37. T cx = info.julia ? juliaX : x;
  38. T cy = info.julia ? juliaY : y;
  39. std::complex<double> z{ x, y };
  40. if (!info.julia) {
  41. z = 0;
  42. }
  43. std::complex<double> c{ cx, cy };
  44. int k = 0;
  45. for (k = 0; k < info.maxIter; k++) {
  46. z = this->iterate(z, c);
  47. if (std::abs(z) >= 4)
  48. break;
  49. }
  50. data[i + j * info.bWidth] = float(k);
  51. /*if (info.smooth) {
  52. if (k >= info.maxIter)
  53. data[i + j * info.bWidth] = float(info.maxIter);
  54. else {
  55. float aapp = mnd::convert<float>(a);
  56. float bapp = mnd::convert<float>(b);
  57. data[i + j * info.bWidth] = ((float) k) + 1 - ::logf(::logf(aapp * aapp + bapp * bapp) / 2) / ::logf(2.0f);
  58. }
  59. }
  60. else
  61. data[i + j * info.bWidth] = k;*/
  62. }
  63. }
  64. }
  65. std::complex<double> NaiveGenerator::iterate(std::complex<double> z, std::complex<double> c)
  66. {
  67. auto& expr = *itf.expr;
  68. return calc(expr, z, c);
  69. }
  70. std::complex<double> NaiveGenerator::calc(mnd::Expression& expr, std::complex<double> z, std::complex<double> c)
  71. {
  72. std::complex<double> result = 0;
  73. std::visit([this, &result, z, c] (auto&& ex) {
  74. using T = std::decay_t<decltype(ex)>;
  75. if constexpr (std::is_same<T, mnd::Constant>::value) {
  76. result = std::complex{ ex.re, ex.im };
  77. }
  78. else if constexpr (std::is_same<T, mnd::Variable>::value) {
  79. if (ex.name == "z")
  80. result = z;
  81. else if (ex.name == "c")
  82. result = c;
  83. else if (ex.name == "i")
  84. result = std::complex{ 0.0, 1.0 };
  85. }
  86. else if constexpr (std::is_same<T, mnd::Negation>::value) {
  87. result = -calc(*ex.operand, z, c);
  88. }
  89. else if constexpr (std::is_same<T, mnd::Addition>::value) {
  90. if (ex.subtraction)
  91. result = calc(*ex.left, z, c) - calc(*ex.right, z, c);
  92. else
  93. result = calc(*ex.left, z, c) + calc(*ex.right, z, c);
  94. }
  95. else if constexpr (std::is_same<T, mnd::Multiplication>::value) {
  96. result = calc(*ex.left, z, c) * calc(*ex.right, z, c);
  97. }
  98. else if constexpr (std::is_same<T, mnd::Division>::value) {
  99. result = calc(*ex.left, z, c) / calc(*ex.right, z, c);
  100. }
  101. else if constexpr (std::is_same<T, mnd::Pow>::value) {
  102. result = std::pow(calc(*ex.left, z, c), calc(*ex.right, z, c));
  103. }
  104. }, expr);
  105. return result;
  106. }