Mandel.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366
  1. #include "Mandel.h"
  2. #include "Fixed.h"
  3. #include "CpuGenerators.h"
  4. #include "JuliaGenerators.h"
  5. #include "ClGenerators.h"
  6. #include "OpenClInternal.h"
  7. #include "OpenClCode.h"
  8. #include <asmjit/asmjit.h>
  9. #include <map>
  10. using mnd::MandelDevice;
  11. using mnd::MandelContext;
  12. using mnd::MandelGenerator;
  13. using mnd::AdaptiveGenerator;
  14. template<typename T, typename U>
  15. static std::map<U, T> invertMap(const std::map<T, U>& m)
  16. {
  17. std::map<U, T> res;
  18. std::transform(m.begin(), m.end(), std::inserter(res, res.end()), [](auto& pair) {
  19. return std::pair{ pair.second, pair.first };
  20. });
  21. return res;
  22. }
  23. static const std::map<mnd::GeneratorType, std::string> typeNames =
  24. {
  25. { mnd::GeneratorType::FLOAT, "float" },
  26. { mnd::GeneratorType::FLOAT_SSE2, "float SSE2" },
  27. { mnd::GeneratorType::FLOAT_AVX, "float AVX" },
  28. { mnd::GeneratorType::FLOAT_AVX_FMA, "float AVX+FMA" },
  29. { mnd::GeneratorType::FLOAT_AVX512, "float AVX512" },
  30. { mnd::GeneratorType::FLOAT_NEON, "float NEON" },
  31. { mnd::GeneratorType::DOUBLE_FLOAT, "double float" },
  32. { mnd::GeneratorType::DOUBLE, "double" },
  33. { mnd::GeneratorType::DOUBLE_SSE2, "double SSE2" },
  34. { mnd::GeneratorType::DOUBLE_AVX, "double AVX" },
  35. { mnd::GeneratorType::DOUBLE_AVX_FMA, "double AVX+FMA" },
  36. { mnd::GeneratorType::DOUBLE_AVX512, "double AVX512" },
  37. { mnd::GeneratorType::DOUBLE_NEON, "double NEON" },
  38. { mnd::GeneratorType::DOUBLE_DOUBLE, "double double" },
  39. { mnd::GeneratorType::DOUBLE_DOUBLE_AVX, "double double AVX" },
  40. { mnd::GeneratorType::DOUBLE_DOUBLE_AVX_FMA, "double double AVX+FMA" },
  41. { mnd::GeneratorType::QUAD_DOUBLE, "quad double" },
  42. { mnd::GeneratorType::FLOAT128, "float128" },
  43. { mnd::GeneratorType::FLOAT256, "float256" },
  44. { mnd::GeneratorType::FIXED64, "fixed64" },
  45. { mnd::GeneratorType::FIXED128, "fixed128" },
  46. { mnd::GeneratorType::FIXED512, "fixed512" },
  47. };
  48. static const std::map<std::string, mnd::GeneratorType> nameTypes = invertMap(typeNames);
  49. namespace mnd
  50. {
  51. const std::string& getGeneratorName(mnd::GeneratorType type)
  52. {
  53. return typeNames.at(type);
  54. }
  55. mnd::GeneratorType getTypeFromName(const std::string& name)
  56. {
  57. return nameTypes.at(name);
  58. }
  59. }
  60. MandelContext mnd::initializeContext(void)
  61. {
  62. return MandelContext();
  63. }
  64. MandelDevice::MandelDevice(mnd::ClDeviceWrapper device) :
  65. clDevice{ std::make_unique<ClDeviceWrapper>(std::move(device)) }
  66. {
  67. }
  68. mnd::MandelGenerator* MandelDevice::getGenerator(mnd::GeneratorType type) const
  69. {
  70. auto it = mandelGenerators.find(type);
  71. if (it != mandelGenerators.end())
  72. return it->second.get();
  73. else
  74. return nullptr;
  75. }
  76. std::vector<mnd::GeneratorType> MandelDevice::getSupportedTypes(void) const
  77. {
  78. std::vector<GeneratorType> types;
  79. for (auto& [type, gen] : mandelGenerators) {
  80. types.push_back(type);
  81. }
  82. return types;
  83. }
  84. MandelContext::MandelContext(void) :
  85. jitRuntime{ std::make_unique<asmjit::JitRuntime>() }
  86. {
  87. #if defined(__x86_64__) || defined(_M_X64) || defined(__i386) || defined(_M_IX86)
  88. if (cpuInfo.hasAvx512()) {
  89. auto fl = std::make_unique<CpuGenerator<float, mnd::X86_AVX_512, true>>();
  90. auto db = std::make_unique<CpuGenerator<double, mnd::X86_AVX_512, true>>();
  91. cpuGenerators.insert({ GeneratorType::FLOAT_AVX512, std::move(fl) });
  92. cpuGenerators.insert({ GeneratorType::DOUBLE_AVX512, std::move(db) });
  93. }
  94. if (cpuInfo.hasAvx()) {
  95. auto fl = std::make_unique<CpuGenerator<float, mnd::X86_AVX, true>>();
  96. auto db = std::make_unique<CpuGenerator<double, mnd::X86_AVX, true>>();
  97. auto ddb = std::make_unique<CpuGenerator<DoubleDouble, mnd::X86_AVX, true>>();
  98. cpuGenerators.insert({ GeneratorType::FLOAT_AVX, std::move(fl) });
  99. cpuGenerators.insert({ GeneratorType::DOUBLE_AVX, std::move(db) });
  100. cpuGenerators.insert({ GeneratorType::DOUBLE_DOUBLE_AVX, std::move(ddb) });
  101. if (cpuInfo.hasFma()) {
  102. auto favxfma = std::make_unique<CpuGenerator<float, mnd::X86_AVX_FMA, true>>();
  103. auto davxfma = std::make_unique<CpuGenerator<double, mnd::X86_AVX_FMA, true>>();
  104. auto ddavx = std::make_unique<CpuGenerator<DoubleDouble, mnd::X86_AVX_FMA, true>>();
  105. cpuGenerators.insert({ GeneratorType::FLOAT_AVX_FMA, std::move(favxfma) });
  106. cpuGenerators.insert({ GeneratorType::DOUBLE_AVX_FMA, std::move(davxfma) });
  107. cpuGenerators.insert({ GeneratorType::DOUBLE_DOUBLE_AVX_FMA, std::move(ddavx) });
  108. }
  109. }
  110. if (cpuInfo.hasSse2()) {
  111. auto fl = std::make_unique<CpuGenerator<float, mnd::X86_SSE2, true>>();
  112. auto db = std::make_unique<CpuGenerator<double, mnd::X86_SSE2, true>>();
  113. cpuGenerators.insert({ GeneratorType::FLOAT_SSE2, std::move(fl) });
  114. cpuGenerators.insert({ GeneratorType::DOUBLE_SSE2, std::move(db) });
  115. }
  116. #elif defined(__arm__) || defined(__aarch64__) || defined(_M_ARM)
  117. if (cpuInfo.hasNeon()) {
  118. auto fl = std::make_unique<CpuGenerator<float, mnd::ARM_NEON, true>>();
  119. auto db = std::make_unique<CpuGenerator<double, mnd::ARM_NEON, true>>();
  120. cpuGenerators.insert({ GeneratorType::FLOAT_NEON, std::move(fl) });
  121. cpuGenerators.insert({ GeneratorType::DOUBLE_NEON, std::move(db) });
  122. }
  123. #endif
  124. {
  125. auto fl = std::make_unique<CpuGenerator<float, mnd::NONE, true>>();
  126. auto db = std::make_unique<CpuGenerator<double, mnd::NONE, true>>();
  127. cpuGenerators.insert({ GeneratorType::FLOAT, std::move(fl) });
  128. cpuGenerators.insert({ GeneratorType::DOUBLE, std::move(db) });
  129. auto fx64 = std::make_unique<CpuGenerator<Fixed64, mnd::NONE, true>>();
  130. auto fx128 = std::make_unique<CpuGenerator<Fixed128, mnd::NONE, true>>();
  131. cpuGenerators.insert({ GeneratorType::FIXED64, std::move(fx64) });
  132. cpuGenerators.insert({ GeneratorType::FIXED128, std::move(fx128) });
  133. }
  134. #ifdef WITH_BOOST
  135. auto quad = std::make_unique<CpuGenerator<Float128, mnd::NONE, true>>();
  136. auto oct = std::make_unique<CpuGenerator<Float256, mnd::NONE, true>>();
  137. cpuGenerators.insert({ GeneratorType::FLOAT128, std::move(quad) });
  138. cpuGenerators.insert({ GeneratorType::FLOAT256, std::move(oct) });
  139. #endif // WITH_BOOST
  140. auto dd = std::make_unique<CpuGenerator<DoubleDouble, mnd::NONE, true>>();
  141. auto qd = std::make_unique<CpuGenerator<QuadDouble, mnd::NONE, true>>();
  142. cpuGenerators.insert({ GeneratorType::DOUBLE_DOUBLE, std::move(dd) });
  143. cpuGenerators.insert({ GeneratorType::QUAD_DOUBLE, std::move(qd) });
  144. auto fix512 = std::make_unique<CpuGenerator<Fixed512, mnd::NONE, true>>();
  145. cpuGenerators.insert({ GeneratorType::FIXED512, std::move(fix512) });
  146. devices = createDevices();
  147. adaptiveGenerator = createAdaptiveGenerator();
  148. }
  149. std::unique_ptr<mnd::AdaptiveGenerator> MandelContext::createAdaptiveGenerator(void)
  150. {
  151. auto* floatGen = getCpuGenerator(GeneratorType::FLOAT);
  152. auto* doubleGen = getCpuGenerator(GeneratorType::DOUBLE);
  153. auto* doubleDoubleGen = getCpuGenerator(GeneratorType::DOUBLE_DOUBLE);
  154. auto* quadDoubleGen = getCpuGenerator(GeneratorType::QUAD_DOUBLE);
  155. auto* f256Gen = getCpuGenerator(GeneratorType::FLOAT256);
  156. auto* fix512 = getCpuGenerator(GeneratorType::FIXED512);
  157. if (cpuInfo.hasAvx()) {
  158. floatGen = getCpuGenerator(GeneratorType::FLOAT_AVX);
  159. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_AVX);
  160. }
  161. else if (cpuInfo.hasSse2()) {
  162. floatGen = getCpuGenerator(GeneratorType::FLOAT_SSE2);
  163. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_SSE2);
  164. }
  165. if (cpuInfo.hasAvx() && cpuInfo.hasFma()) {
  166. floatGen = getCpuGenerator(GeneratorType::FLOAT_AVX_FMA);
  167. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_AVX_FMA);
  168. doubleDoubleGen = getCpuGenerator(GeneratorType::DOUBLE_DOUBLE_AVX_FMA);
  169. }
  170. if (cpuInfo.hasAvx512()) {
  171. floatGen = getCpuGenerator(GeneratorType::FLOAT_AVX512);
  172. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_AVX512);
  173. }
  174. if (cpuInfo.hasNeon()) {
  175. floatGen = getCpuGenerator(GeneratorType::FLOAT_NEON);
  176. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_NEON);
  177. }
  178. if (!devices.empty()) {
  179. auto& device = devices[0];
  180. auto* fGen = device.getGenerator(GeneratorType::FLOAT);
  181. auto* dGen = device.getGenerator(GeneratorType::DOUBLE);
  182. auto* ddGen = device.getGenerator(GeneratorType::DOUBLE_DOUBLE);
  183. auto* qdGen = device.getGenerator(GeneratorType::QUAD_DOUBLE);
  184. if (fGen)
  185. floatGen = fGen;
  186. if (dGen)
  187. doubleGen = dGen;
  188. if (ddGen)
  189. doubleDoubleGen = ddGen;
  190. if (qdGen)
  191. quadDoubleGen = qdGen;
  192. }
  193. auto ag = std::make_unique<AdaptiveGenerator>();
  194. ag->addGenerator(getPrecision<float>(), *floatGen);
  195. ag->addGenerator(getPrecision<double>(), *doubleGen);
  196. ag->addGenerator(getPrecision<DoubleDouble>(), *doubleDoubleGen);
  197. ag->addGenerator(getPrecision<QuadDouble>(), *quadDoubleGen);
  198. ag->addGenerator(getPrecision<Float256>(), *f256Gen);
  199. ag->addGenerator(Precision::INF_PREC, *fix512);
  200. return ag;
  201. }
  202. std::vector<MandelDevice> MandelContext::createDevices(void)
  203. {
  204. std::vector<MandelDevice> mandelDevices;
  205. #ifdef WITH_OPENCL
  206. std::vector<cl::Platform> platforms;
  207. cl::Platform::get(&platforms);
  208. //platforms.erase(platforms.begin() + 1);
  209. for (auto& platform : platforms) {
  210. std::string name = platform.getInfo<CL_PLATFORM_NAME>();
  211. std::string profile = platform.getInfo<CL_PLATFORM_PROFILE>();
  212. //printf("using opencl platform: %s\n", name.c_str());
  213. //std::string ext = platform.getInfo<CL_PLATFORM_EXTENSIONS>();
  214. //printf("Platform extensions: %s\n", ext.c_str());
  215. //printf("Platform: %s, %s\n", name.c_str(), profile.c_str());
  216. std::vector<cl::Device> devices;
  217. platform.getDevices(CL_DEVICE_TYPE_GPU, &devices);
  218. for (auto& device : devices) {
  219. //printf("Device: %s\n", device.getInfo<CL_DEVICE_NAME>().c_str());
  220. //printf("preferred float width: %d\n", device.getInfo<CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT>());
  221. //printf("vendor: %s\n", device.getInfo<CL_DEVICE_VENDOR>().c_str());
  222. std::string extensions = device.getInfo<CL_DEVICE_EXTENSIONS>();
  223. auto supportsDouble = extensions.find("cl_khr_fp64") != std::string::npos;
  224. //printf("Device extensions: %s\n", ext.c_str());
  225. MandelDevice md{ ClDeviceWrapper{ device, cl::Context{ device } } };
  226. //printf("clock: %d", device.getInfo<CL_DEVICE_MAX_CLOCK_FREQUENCY>());
  227. md.name = device.getInfo<CL_DEVICE_NAME>();
  228. md.vendor = device.getInfo<CL_DEVICE_VENDOR>();
  229. //printf(" using opencl device: %s\n", md.name.c_str());
  230. try {
  231. md.mandelGenerators.insert({ GeneratorType::FLOAT, std::make_unique<ClGeneratorFloat>(md) });
  232. md.mandelGenerators.insert({ GeneratorType::FIXED64, std::make_unique<ClGenerator64>(md) });
  233. md.mandelGenerators.insert({ GeneratorType::DOUBLE_FLOAT, std::make_unique<ClGeneratorDoubleFloat>(md) });
  234. }
  235. catch (const std::string& err) {
  236. printf("err: %s", err.c_str());
  237. }
  238. if (supportsDouble) {
  239. try {
  240. md.mandelGenerators.insert({ GeneratorType::DOUBLE, std::make_unique<ClGeneratorDouble>(md) });
  241. md.mandelGenerators.insert({ GeneratorType::DOUBLE_DOUBLE, std::make_unique<ClGeneratorDoubleDouble>(md) });
  242. md.mandelGenerators.insert({ GeneratorType::QUAD_DOUBLE, std::make_unique<ClGeneratorQuadDouble>(md) });
  243. }
  244. catch (const std::string& err) {
  245. printf("err: %s", err.c_str());
  246. fflush(stdout);
  247. }
  248. }
  249. try {
  250. //md.generator128 = std::make_unique<ClGenerator128>(device);
  251. }
  252. catch (const std::string& err) {
  253. //fprintf(stderr, "error creating 128bit cl generator: %s\n", err.c_str());
  254. }
  255. mandelDevices.push_back(std::move(md));
  256. }
  257. }
  258. #endif // WITH_OPENCL
  259. return mandelDevices;
  260. }
  261. MandelContext::~MandelContext(void)
  262. {
  263. }
  264. AdaptiveGenerator& MandelContext::getDefaultGenerator(void)
  265. {
  266. return *adaptiveGenerator;
  267. }
  268. std::vector<MandelDevice>& MandelContext::getDevices(void)
  269. {
  270. return devices;
  271. }
  272. asmjit::JitRuntime& MandelContext::getJitRuntime(void)
  273. {
  274. return *jitRuntime;
  275. }
  276. MandelGenerator* MandelContext::getCpuGenerator(mnd::GeneratorType type)
  277. {
  278. auto it = cpuGenerators.find(type);
  279. if (it != cpuGenerators.end())
  280. return it->second.get();
  281. else
  282. return nullptr;
  283. }
  284. std::vector<mnd::GeneratorType> MandelContext::getSupportedTypes(void) const
  285. {
  286. std::vector<GeneratorType> types;
  287. for (auto& [type, gen] : cpuGenerators) {
  288. types.push_back(type);
  289. }
  290. return types;
  291. }
  292. mnd::JuliaGenerator& MandelContext::getJuliaGenerator()
  293. {
  294. juliaGenerator = std::make_unique<JuliaGeneratorFloat>(getPrecision<double>());
  295. return *juliaGenerator;
  296. }