Mandel.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313
  1. #include "Mandel.h"
  2. #include "Fixed.h"
  3. #include "CpuGenerators.h"
  4. #include "ClGenerators.h"
  5. #include <map>
  6. using mnd::MandelDevice;
  7. using mnd::MandelContext;
  8. using mnd::Generator;
  9. using mnd::AdaptiveGenerator;
  10. template<typename T, typename U>
  11. static std::map<U, T> invertMap(const std::map<T, U>& m)
  12. {
  13. std::map<U, T> res;
  14. std::transform(m.begin(), m.end(), std::inserter(res, res.end()), [](auto& pair) {
  15. return std::pair{ pair.second, pair.first };
  16. });
  17. return res;
  18. }
  19. static const std::map<mnd::GeneratorType, std::string> typeNames =
  20. {
  21. { mnd::GeneratorType::FLOAT, "float" },
  22. { mnd::GeneratorType::FLOAT_SSE2, "float SSE2" },
  23. { mnd::GeneratorType::FLOAT_AVX, "float AVX" },
  24. { mnd::GeneratorType::FLOAT_AVX512, "float AVX512" },
  25. { mnd::GeneratorType::FLOAT_NEON, "float NEON" },
  26. { mnd::GeneratorType::DOUBLE_FLOAT, "double float" },
  27. { mnd::GeneratorType::DOUBLE, "double" },
  28. { mnd::GeneratorType::DOUBLE_SSE2, "double SSE2" },
  29. { mnd::GeneratorType::DOUBLE_AVX, "double AVX" },
  30. { mnd::GeneratorType::DOUBLE_AVX512, "double AVX512" },
  31. { mnd::GeneratorType::DOUBLE_NEON, "double NEON" },
  32. { mnd::GeneratorType::DOUBLE_DOUBLE, "double double" },
  33. { mnd::GeneratorType::DOUBLE_DOUBLE_AVX, "double double AVX" },
  34. { mnd::GeneratorType::DOUBLE_DOUBLE_AVX_FMA, "double double AVX+FMA" },
  35. { mnd::GeneratorType::QUAD_DOUBLE, "quad double" },
  36. { mnd::GeneratorType::FLOAT128, "float128" },
  37. { mnd::GeneratorType::FLOAT256, "float256" },
  38. { mnd::GeneratorType::FIXED64, "fixed64" },
  39. { mnd::GeneratorType::FIXED512, "fixed512" },
  40. };
  41. static const std::map<std::string, mnd::GeneratorType> nameTypes = invertMap(typeNames);
  42. namespace mnd
  43. {
  44. const std::string& getGeneratorName(mnd::GeneratorType type)
  45. {
  46. return typeNames.at(type);
  47. }
  48. mnd::GeneratorType getTypeFromName(const std::string& name)
  49. {
  50. return nameTypes.at(name);
  51. }
  52. }
  53. MandelContext mnd::initializeContext(void)
  54. {
  55. MandelContext context = MandelContext();
  56. return context;
  57. }
  58. MandelDevice::MandelDevice(void)
  59. {
  60. }
  61. mnd::Generator* MandelDevice::getGenerator(mnd::GeneratorType type) const
  62. {
  63. auto it = generators.find(type);
  64. if (it != generators.end())
  65. return it->second.get();
  66. else
  67. return nullptr;
  68. }
  69. std::vector<mnd::GeneratorType> MandelDevice::getSupportedTypes(void) const
  70. {
  71. std::vector<GeneratorType> types;
  72. for (auto& [type, gen] : generators) {
  73. types.push_back(type);
  74. }
  75. return types;
  76. }
  77. MandelContext::MandelContext(void)
  78. {
  79. #if defined(__x86_64__) || defined(_M_X64) || defined(__i386) || defined(_M_IX86)
  80. if (cpuInfo.hasAvx()) {
  81. auto fl = std::make_unique<CpuGenerator<float, mnd::X86_AVX, true>>();
  82. auto db = std::make_unique<CpuGenerator<double, mnd::X86_AVX, true>>();
  83. auto ddb = std::make_unique<CpuGenerator<DoubleDouble, mnd::X86_AVX, true>>();
  84. cpuGenerators.insert({ GeneratorType::FLOAT_AVX, std::move(fl) });
  85. cpuGenerators.insert({ GeneratorType::DOUBLE_AVX, std::move(db) });
  86. cpuGenerators.insert({ GeneratorType::DOUBLE_DOUBLE_AVX, std::move(ddb) });
  87. if (cpuInfo.hasFma()) {
  88. auto ddavx = std::make_unique<CpuGenerator<DoubleDouble, mnd::X86_AVX_FMA, true>>();
  89. cpuGenerators.insert({ GeneratorType::DOUBLE_DOUBLE_AVX_FMA, std::move(ddavx) });
  90. }
  91. }
  92. if (cpuInfo.hasSse2()) {
  93. auto fl = std::make_unique<CpuGenerator<float, mnd::X86_SSE2, true>>();
  94. auto db = std::make_unique<CpuGenerator<double, mnd::X86_SSE2, true>>();
  95. cpuGenerators.insert({ GeneratorType::FLOAT_SSE2, std::move(fl) });
  96. cpuGenerators.insert({ GeneratorType::DOUBLE_SSE2, std::move(db) });
  97. }
  98. #elif defined(__arm__) || defined(__aarch64__) || defined(_M_ARM)
  99. if (cpuInfo.hasNeon()) {
  100. auto fl = std::make_unique<CpuGenerator<float, mnd::ARM_NEON, true>>();
  101. auto db = std::make_unique<CpuGenerator<double, mnd::ARM_NEON, true>>();
  102. cpuGenerators.insert({ GeneratorType::FLOAT_NEON, std::move(fl) });
  103. cpuGenerators.insert({ GeneratorType::DOUBLE_NEON, std::move(db) });
  104. }
  105. #endif
  106. {
  107. auto fl = std::make_unique<CpuGenerator<float, mnd::NONE, true>>();
  108. auto db = std::make_unique<CpuGenerator<double, mnd::NONE, true>>();
  109. cpuGenerators.insert({ GeneratorType::FLOAT, std::move(fl) });
  110. cpuGenerators.insert({ GeneratorType::DOUBLE, std::move(db) });
  111. }
  112. #ifdef WITH_BOOST
  113. auto quad = std::make_unique<CpuGenerator<Float128, mnd::NONE, true>>();
  114. auto oct = std::make_unique<CpuGenerator<Float256, mnd::NONE, true>>();
  115. cpuGenerators.insert({ GeneratorType::FLOAT128, std::move(quad) });
  116. cpuGenerators.insert({ GeneratorType::FLOAT256, std::move(oct) });
  117. #endif // WITH_BOOST
  118. auto dd = std::make_unique<CpuGenerator<DoubleDouble, mnd::NONE, true>>();
  119. auto qd = std::make_unique<CpuGenerator<QuadDouble, mnd::NONE, true>>();
  120. cpuGenerators.insert({ GeneratorType::DOUBLE_DOUBLE, std::move(dd) });
  121. cpuGenerators.insert({ GeneratorType::QUAD_DOUBLE, std::move(qd) });
  122. auto fix512 = std::make_unique<CpuGenerator<Fixed512, mnd::NONE, true>>();
  123. cpuGenerators.insert({ GeneratorType::FIXED512, std::move(fix512) });
  124. devices = createDevices();
  125. adaptiveGenerator = createAdaptiveGenerator();
  126. }
  127. std::unique_ptr<mnd::AdaptiveGenerator> MandelContext::createAdaptiveGenerator(void)
  128. {
  129. auto* floatGen = getCpuGenerator(GeneratorType::FLOAT);
  130. auto* doubleGen = getCpuGenerator(GeneratorType::DOUBLE);
  131. auto* doubleDoubleGen = getCpuGenerator(GeneratorType::DOUBLE_DOUBLE);
  132. auto* quadDoubleGen = getCpuGenerator(GeneratorType::QUAD_DOUBLE);
  133. auto* f256Gen = getCpuGenerator(GeneratorType::FLOAT256);
  134. auto* fix512 = getCpuGenerator(GeneratorType::FIXED512);
  135. if (cpuInfo.hasAvx()) {
  136. floatGen = getCpuGenerator(GeneratorType::FLOAT_AVX);
  137. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_AVX);
  138. }
  139. else if (cpuInfo.hasSse2()) {
  140. floatGen = getCpuGenerator(GeneratorType::FLOAT_SSE2);
  141. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_SSE2);
  142. }
  143. if (cpuInfo.hasAvx() && cpuInfo.hasFma()) {
  144. doubleDoubleGen = getCpuGenerator(GeneratorType::DOUBLE_DOUBLE_AVX_FMA);
  145. }
  146. if (cpuInfo.hasNeon()) {
  147. floatGen = getCpuGenerator(GeneratorType::FLOAT_NEON);
  148. doubleGen = getCpuGenerator(GeneratorType::DOUBLE_NEON);
  149. }
  150. if (!devices.empty()) {
  151. auto& device = devices[0];
  152. auto* fGen = device.getGenerator(GeneratorType::FLOAT);
  153. auto* dGen = device.getGenerator(GeneratorType::DOUBLE);
  154. auto* ddGen = device.getGenerator(GeneratorType::DOUBLE_DOUBLE);
  155. if (fGen)
  156. floatGen = fGen;
  157. if (dGen)
  158. doubleGen = dGen;
  159. if (ddGen)
  160. doubleDoubleGen = ddGen;
  161. }
  162. auto ag = std::make_unique<AdaptiveGenerator>();
  163. ag->addGenerator(Precision::FLOAT, *floatGen);
  164. ag->addGenerator(Precision::DOUBLE, *doubleGen);
  165. ag->addGenerator(Precision::DOUBLE_DOUBLE, *doubleDoubleGen);
  166. ag->addGenerator(Precision::QUAD_DOUBLE, *quadDoubleGen);
  167. ag->addGenerator(Precision::FLOAT256, *f256Gen);
  168. ag->addGenerator(Precision::INF_PREC, *fix512);
  169. return ag;
  170. }
  171. std::vector<MandelDevice> MandelContext::createDevices(void)
  172. {
  173. std::vector<MandelDevice> mandelDevices;
  174. #ifdef WITH_OPENCL
  175. std::vector<cl::Platform> platforms;
  176. cl::Platform::get(&platforms);
  177. //platforms.erase(platforms.begin() + 1);
  178. for (auto& platform : platforms) {
  179. std::string name = platform.getInfo<CL_PLATFORM_NAME>();
  180. std::string profile = platform.getInfo<CL_PLATFORM_PROFILE>();
  181. //printf("using opencl platform: %s\n", name.c_str());
  182. //std::string ext = platform.getInfo<CL_PLATFORM_EXTENSIONS>();
  183. //printf("Platform extensions: %s\n", ext.c_str());
  184. //printf("Platform: %s, %s\n", name.c_str(), profile.c_str());
  185. std::vector<cl::Device> devices;
  186. platform.getDevices(CL_DEVICE_TYPE_GPU, &devices);
  187. for (auto& device : devices) {
  188. //printf("Device: %s\n", device.getInfo<CL_DEVICE_NAME>().c_str());
  189. //printf("preferred float width: %d\n", device.getInfo<CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT>());
  190. //printf("vendor: %s\n", device.getInfo<CL_DEVICE_VENDOR>().c_str());
  191. std::string extensions = device.getInfo<CL_DEVICE_EXTENSIONS>();
  192. auto supportsDouble = extensions.find("cl_khr_fp64") != std::string::npos;
  193. //printf("Device extensions: %s\n", ext.c_str());
  194. MandelDevice md;
  195. //printf("clock: %d", device.getInfo<CL_DEVICE_MAX_CLOCK_FREQUENCY>());
  196. md.name = device.getInfo<CL_DEVICE_NAME>();
  197. md.vendor = device.getInfo<CL_DEVICE_VENDOR>();
  198. //printf(" using opencl device: %s\n", md.name.c_str());
  199. try {
  200. md.generators.insert({ GeneratorType::FLOAT, std::make_unique<ClGeneratorFloat>(device) });
  201. md.generators.insert({ GeneratorType::FIXED64, std::make_unique<ClGenerator64>(device) });
  202. //md.generators.insert({ GeneratorType::DOUBLE_FLOAT, std::make_unique<ClGeneratorDoubleFloat>(device) });
  203. }
  204. catch (const std::string& err) {
  205. printf("err: %s", err.c_str());
  206. }
  207. if (supportsDouble) {
  208. try {
  209. md.generators.insert({ GeneratorType::DOUBLE, std::make_unique<ClGeneratorDouble>(device) });
  210. md.generators.insert({ GeneratorType::DOUBLE_DOUBLE, std::make_unique<ClGeneratorDoubleDouble>(device) });
  211. md.generators.insert({ GeneratorType::QUAD_DOUBLE, std::make_unique<ClGeneratorQuadDouble>(device) });
  212. }
  213. catch (const std::string& err) {
  214. printf("err: %s", err.c_str());
  215. fflush(stdout);
  216. }
  217. }
  218. try {
  219. //md.generator128 = std::make_unique<ClGenerator128>(device);
  220. }
  221. catch (const std::string& err) {
  222. //fprintf(stderr, "error creating 128bit cl generator: %s\n", err.c_str());
  223. }
  224. mandelDevices.push_back(std::move(md));
  225. }
  226. }
  227. #endif // WITH_OPENCL
  228. return mandelDevices;
  229. }
  230. AdaptiveGenerator& MandelContext::getDefaultGenerator(void)
  231. {
  232. return *adaptiveGenerator;
  233. }
  234. const std::vector<MandelDevice>& MandelContext::getDevices(void)
  235. {
  236. return devices;
  237. }
  238. Generator* MandelContext::getCpuGenerator(mnd::GeneratorType type)
  239. {
  240. auto it = cpuGenerators.find(type);
  241. if (it != cpuGenerators.end())
  242. return it->second.get();
  243. else
  244. return nullptr;
  245. }
  246. std::vector<mnd::GeneratorType> MandelContext::getSupportedTypes(void) const
  247. {
  248. std::vector<GeneratorType> types;
  249. for (auto& [type, gen] : cpuGenerators) {
  250. types.push_back(type);
  251. }
  252. return types;
  253. }