CpuGeneratorsSSE2.cpp 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228
  1. #include "CpuGenerators.h"
  2. #include <immintrin.h>
  3. #include <omp.h>
  4. #include <memory>
  5. using mnd::CpuGenerator;
  6. namespace mnd
  7. {
  8. template class CpuGenerator<float, mnd::X86_SSE2, false>;
  9. template class CpuGenerator<float, mnd::X86_SSE2, true>;
  10. template class CpuGenerator<double, mnd::X86_SSE2, false>;
  11. template class CpuGenerator<double, mnd::X86_SSE2, true>;
  12. }
  13. template<bool parallel>
  14. void CpuGenerator<float, mnd::X86_SSE2, parallel>::generate(const mnd::MandelInfo& info, float* data)
  15. {
  16. using T = float;
  17. const MandelViewport& view = info.view;
  18. const float dppf = float(view.width / info.bWidth);
  19. const float viewxf = float(view.x);
  20. __m128 viewx = { viewxf, viewxf, viewxf, viewxf };
  21. __m128 dpp = { dppf, dppf, dppf, dppf };
  22. T jX = mnd::convert<T>(info.juliaX);
  23. T jY = mnd::convert<T>(info.juliaY);
  24. __m128 juliaX = { jX, jX, jX, jX };
  25. __m128 juliaY = { jY, jY, jY, jY };
  26. if constexpr(parallel)
  27. omp_set_num_threads(omp_get_num_procs());
  28. #pragma omp parallel for schedule(static, 1) if (parallel)
  29. for (long j = 0; j < info.bHeight; j++) {
  30. T y = T(view.y) + T(j) * T(view.height / info.bHeight);
  31. __m128 ys = {y, y, y, y};
  32. for (long i = 0; i < info.bWidth; i += 8) {
  33. __m128 pixc = { float(i), float(i + 1), float(i + 2), float(i + 3) };
  34. __m128 pixc2 = { float(i + 4), float(i + 5), float(i + 6), float(i + 7) };
  35. __m128 xs = _mm_add_ps(_mm_mul_ps(dpp, pixc), viewx);
  36. __m128 xs2 = _mm_add_ps(_mm_mul_ps(dpp, pixc2), viewx);
  37. __m128 counter = { 0, 0, 0, 0 };
  38. __m128 adder = { 1, 1, 1, 1 };
  39. __m128 counter2 = { 0, 0, 0, 0 };
  40. __m128 adder2 = { 1, 1, 1, 1 };
  41. __m128 threshold = { 16.0f, 16.0f, 16.0f, 16.0f };
  42. __m128 a = xs;
  43. __m128 b = ys;
  44. __m128 a2 = xs2;
  45. __m128 b2 = ys;
  46. __m128 resulta = { 0, 0, 0, 0 };
  47. __m128 resultb = { 0, 0, 0, 0 };
  48. __m128 resulta2 = { 0, 0, 0, 0 };
  49. __m128 resultb2 = { 0, 0, 0, 0 };
  50. for (int k = 0; k < info.maxIter; k++) {
  51. __m128 aa = _mm_mul_ps(a, a);
  52. __m128 aa2 = _mm_mul_ps(a2, a2);
  53. __m128 bb = _mm_mul_ps(b, b);
  54. __m128 bb2 = _mm_mul_ps(b2, b2);
  55. __m128 abab = _mm_mul_ps(a, b); abab = _mm_add_ps(abab, abab);
  56. __m128 abab2 = _mm_mul_ps(a2, b2); abab2 = _mm_add_ps(abab2, abab2);
  57. a = _mm_add_ps(_mm_sub_ps(aa, bb), xs);
  58. b = _mm_add_ps(abab, ys);
  59. a2 = _mm_add_ps(_mm_sub_ps(aa2, bb2), xs2);
  60. b2 = _mm_add_ps(abab2, ys);
  61. __m128 cmp = _mm_cmple_ps(_mm_add_ps(aa, bb), threshold);
  62. __m128 cmp2 = _mm_cmple_ps(_mm_add_ps(aa2, bb2), threshold);
  63. if (info.smooth) {
  64. resulta = _mm_or_ps(_mm_andnot_ps(cmp, resulta), _mm_and_ps(cmp, a));
  65. resultb = _mm_or_ps(_mm_andnot_ps(cmp, resultb), _mm_and_ps(cmp, b));
  66. resulta2 = _mm_or_ps(_mm_andnot_ps(cmp2, resulta2), _mm_and_ps(cmp2, a2));
  67. resultb2 = _mm_or_ps(_mm_andnot_ps(cmp2, resultb2), _mm_and_ps(cmp2, b2));
  68. }
  69. adder = _mm_and_ps(adder, cmp);
  70. counter = _mm_add_ps(counter, adder);
  71. adder2 = _mm_and_ps(adder2, cmp2);
  72. counter2 = _mm_add_ps(counter2, adder2);
  73. if ((k & 0x7) == 0 && _mm_movemask_epi8(_mm_castps_si128(cmp)) == 0 &&
  74. _mm_movemask_epi8(_mm_castps_si128(cmp2)) == 0) {
  75. break;
  76. }
  77. }
  78. auto alignVec = [](float* data) -> float* {
  79. void* aligned = data;
  80. ::size_t length = 64;
  81. std::align(32, 8 * sizeof(float), aligned, length);
  82. return static_cast<float*>(aligned);
  83. };
  84. float resData[64];
  85. float* ftRes = alignVec(resData);
  86. float* resa = ftRes + 8;
  87. float* resb = ftRes + 16;
  88. _mm_store_ps(ftRes, counter);
  89. _mm_store_ps(ftRes + 4, counter2);
  90. _mm_store_ps(resa, resulta);
  91. _mm_store_ps(resa + 4, resulta2);
  92. _mm_store_ps(resb, resultb);
  93. _mm_store_ps(resb + 4, resultb2);
  94. for (int k = 0; k < 8 && i + k < info.bWidth; k++) {
  95. if (info.smooth)
  96. data[i + k + j * info.bWidth] = ftRes[k] <= 0 ? info.maxIter :
  97. ftRes[k] >= info.maxIter ? info.maxIter :
  98. ((float)ftRes[k]) + 1 - ::logf(::logf(resa[k] * resa[k] + resb[k] * resb[k]) / 2) / ::logf(2.0f);
  99. else
  100. data[i + k + j * info.bWidth] = ftRes[k] > 0 ? float(ftRes[k]) : info.maxIter;
  101. }
  102. }
  103. }
  104. }
  105. template<bool parallel>
  106. void CpuGenerator<double, mnd::X86_SSE2, parallel>::generate(const mnd::MandelInfo& info, float* data)
  107. {
  108. using T = double;
  109. const MandelViewport& view = info.view;
  110. const double dppf = double(view.width / info.bWidth);
  111. const double viewxf = double(view.x);
  112. __m128d viewx = { viewxf, viewxf };
  113. __m128d dpp = { dppf, dppf };
  114. T jX = mnd::convert<T>(info.juliaX);
  115. T jY = mnd::convert<T>(info.juliaY);
  116. __m128d juliaX = { jX, jX };
  117. __m128d juliaY = { jY, jY };
  118. if constexpr(parallel)
  119. omp_set_num_threads(omp_get_num_procs());
  120. #pragma omp parallel for schedule(static, 1) if (parallel)
  121. for (long j = 0; j < info.bHeight; j++) {
  122. T y = T(view.y) + T(j) * T(view.height / info.bHeight);
  123. __m128d ys = { y, y };
  124. for (long i = 0; i < info.bWidth; i += 4) {
  125. __m128d pixc = { double(i), double(i + 1) };
  126. __m128d pixc2 = { double(i + 2), double(i + 3) };
  127. __m128d xs = _mm_add_pd(_mm_mul_pd(dpp, pixc), viewx);
  128. __m128d xs2 = _mm_add_pd(_mm_mul_pd(dpp, pixc2), viewx);
  129. __m128d counter = { 0, 0 };
  130. __m128d adder = { 1, 1 };
  131. __m128d counter2 = { 0, 0 };
  132. __m128d adder2 = { 1, 1 };
  133. __m128d threshold = { 16.0f, 16.0f };
  134. __m128d a = xs;
  135. __m128d b = ys;
  136. __m128d a2 = xs2;
  137. __m128d b2 = ys;
  138. __m128d resulta = { 0, 0 };
  139. __m128d resultb = { 0, 0 };
  140. __m128d resulta2 = { 0, 0 };
  141. __m128d resultb2 = { 0, 0 };
  142. for (int k = 0; k < info.maxIter; k++) {
  143. __m128d aa = _mm_mul_pd(a, a);
  144. __m128d aa2 = _mm_mul_pd(a2, a2);
  145. __m128d bb = _mm_mul_pd(b, b);
  146. __m128d bb2 = _mm_mul_pd(b2, b2);
  147. __m128d abab = _mm_mul_pd(a, b); abab = _mm_add_pd(abab, abab);
  148. __m128d abab2 = _mm_mul_pd(a2, b2); abab2 = _mm_add_pd(abab2, abab2);
  149. a = _mm_add_pd(_mm_sub_pd(aa, bb), xs);
  150. b = _mm_add_pd(abab, ys);
  151. a2 = _mm_add_pd(_mm_sub_pd(aa2, bb2), xs2);
  152. b2 = _mm_add_pd(abab2, ys);
  153. __m128d cmp = _mm_cmple_pd(_mm_add_pd(aa, bb), threshold);
  154. __m128d cmp2 = _mm_cmple_pd(_mm_add_pd(aa2, bb2), threshold);
  155. if (info.smooth) {
  156. resulta = _mm_or_pd(_mm_andnot_pd(cmp, resulta), _mm_and_pd(cmp, a));
  157. resultb = _mm_or_pd(_mm_andnot_pd(cmp, resultb), _mm_and_pd(cmp, b));
  158. resulta2 = _mm_or_pd(_mm_andnot_pd(cmp2, resulta2), _mm_and_pd(cmp2, a2));
  159. resultb2 = _mm_or_pd(_mm_andnot_pd(cmp2, resultb2), _mm_and_pd(cmp2, b2));
  160. }
  161. adder = _mm_and_pd(adder, cmp);
  162. counter = _mm_add_pd(counter, adder);
  163. adder2 = _mm_and_pd(adder2, cmp2);
  164. counter2 = _mm_add_pd(counter2, adder2);
  165. if ((k & 0x7 == 0) && _mm_movemask_epi8(_mm_castpd_si128(cmp)) == 0 &&
  166. _mm_movemask_epi8(_mm_castpd_si128(cmp)) == 0) {
  167. break;
  168. }
  169. }
  170. auto alignVec = [](double* data) -> double* {
  171. void* aligned = data;
  172. ::size_t length = 64;
  173. std::align(32, 4 * sizeof(double), aligned, length);
  174. return static_cast<double*>(aligned);
  175. };
  176. double resData[24];
  177. double* ftRes = alignVec(resData);
  178. double* resa = ftRes + 4;
  179. double* resb = ftRes + 8;
  180. _mm_store_pd(ftRes, counter);
  181. _mm_store_pd(ftRes + 2, counter2);
  182. _mm_store_pd(resa, resulta);
  183. _mm_store_pd(resa + 2, resulta2);
  184. _mm_store_pd(resb, resultb);
  185. _mm_store_pd(resb + 2, resultb2);
  186. //for (int k = 0; k < 2 && i + k < info.bWidth; k++)
  187. // data[i + k + j * info.bWidth] = ftRes[k] > 0 ? ftRes[k] : info.maxIter;
  188. for (int k = 0; k < 4 && i + k < info.bWidth; k++) {
  189. if (info.smooth)
  190. data[i + k + j * info.bWidth] = ftRes[k] <= 0 ? info.maxIter :
  191. ftRes[k] >= info.maxIter ? info.maxIter :
  192. ((float)ftRes[k]) + 1 - ::logf(::logf(resa[k] * resa[k] + resb[k] * resb[k]) / 2) / ::logf(2.0f);
  193. else
  194. data[i + k + j * info.bWidth] = ftRes[k] > 0 ? float(ftRes[k]) : info.maxIter;
  195. }
  196. }
  197. }
  198. }