#include "MandelVideoGenerator.h" #include "VideoStream.h" #include "Mandel.h" #include #include MandelVideoGenerator::MandelVideoGenerator(const ExportVideoInfo& evi) : evi{ evi } { } void MandelVideoGenerator::addProgressCallback(ProgressCallback pc) { progressCallbacks.push_back(std::move(pc)); } void MandelVideoGenerator::generate(void) { mnd::MandelContext ctxt = mnd::initializeContext(); mnd::MandelGenerator& gen = ctxt.getDefaultGenerator(); VideoStream vs(evi.width, evi.height, evi.path, evi.bitrate, evi.fps, evi.preset.c_str()); mnd::Real x = evi.end.x + evi.end.width / 2; mnd::Real y = evi.end.y + evi.end.height / 2; mnd::Real w = evi.start.width; mnd::Real h = evi.start.height; mnd::Real bigW = mnd::Real("1e+300"); double bigFac = 1.0; Bitmap big; Bitmap small; int64_t frameCounter = 0; const float oversizeFactor = 2; const float sqrFactor = sqrt(oversizeFactor); //const mnd::Real invsqrt2 = mnd::Real(1.0) / mnd::sqrt(mnd::Real(2)); mnd::MandelInfo mi; mi.bWidth = evi.width * oversizeFactor; mi.bHeight = evi.height * oversizeFactor; mi.maxIter = evi.maxIterations; bool first = true; while(w > evi.end.width || h > evi.end.height) { if (bigW > sqrt(oversizeFactor) * w) { mi.view = mnd::MandelViewport{ x - w/2, y - h/2, w, h }; Bitmap raw{ evi.width * oversizeFactor, evi.height * oversizeFactor }; Bitmap rawSmall{ evi.width * oversizeFactor, evi.height * oversizeFactor }; mi.view.zoomCenter(oversizeFactor); gen.generate(mi, rawSmall.pixels.get()); //mi.view.zoomCenter(sqrt(oversizeFactor)); //gen.generate(mi, raw.pixels.get()); //auto before = std::chrono::high_resolution_clock::now(); if (first) { mi.view.zoomCenter(sqrt(oversizeFactor)); gen.generate(mi, raw.pixels.get()); small = raw.map([&mi, this] (float i) { return i >= mi.maxIter ? RGBColor{ 0, 0, 0 } : evi.gradient.get(i); }); } big = std::move(small); small = rawSmall.map([&mi, this] (float i) { return i >= mi.maxIter ? RGBColor{ 0, 0, 0 } : evi.gradient.get(i); }); printf("recalced\n"); /*mi.view.zoomCenter(0.5); gen.generate(mi, raw.pixels.get()); small = raw.map([] (float x) { return RGBColor{ uint8_t(::sin(x / 100) * 127 + 127), uint8_t(::sin(x / 213) * 127 + 127), uint8_t(::cos(x / 173) * 127 + 127) }; });*/ bigW = w; bigFac = 1.0; first = false; } vs.addFrame(overlay(big, small, evi.width, evi.height, bigFac, sqrt(oversizeFactor))); frameCounter++; MandelVideoProgressInfo mvpi{ frameCounter }; callCallbacks(mvpi); w *= ::pow(0.99, evi.zoomSpeed); h *= ::pow(0.99, evi.zoomSpeed); bigFac *= ::pow(0.99, evi.zoomSpeed); } } void MandelVideoGenerator::callCallbacks(const MandelVideoProgressInfo& evi) { for (auto& pc : progressCallbacks) { pc(evi); } } inline RGBColor lerpColors(const RGBColor& a, const RGBColor& b, double lerp) { auto mklin = [] (double x) { return x; }; auto unlin = [] (double x) { return x; }; return RGBColor{ a.r * lerp + b.r * (1 - lerp), a.g * lerp + b.g * (1 - lerp), a.b * lerp + b.b * (1 - lerp) }; } inline RGBColor biliniear(const Bitmap& img, double x, double y) { int xfloor = int(::floor(x)); int yfloor = int(::floor(y)); int xceil = int(::ceil(x)); int yceil = int(::ceil(y)); double xLerp = x - xfloor; double yLerp = y - yfloor; RGBColor samples[2][2] = { { img.get(xfloor, yfloor), img.get(xfloor, yceil), }, { img.get(xceil, yfloor), img.get(xceil, yceil), } }; double r = 0, g = 0, b = 0; auto mklin = [] (double x) { return x; }; auto unlin = [] (double x) { return x; }; r += (1 - xLerp) * (1 - yLerp) * mklin(samples[0][0].r); r += (1 - xLerp) * yLerp * mklin(samples[0][1].r); r += xLerp * (1 - yLerp) * mklin(samples[1][0].r); r += xLerp * yLerp * mklin(samples[1][1].r); g += (1 - xLerp) * (1 - yLerp) * mklin(samples[0][0].g); g += (1 - xLerp) * yLerp * mklin(samples[0][1].g); g += xLerp * (1 - yLerp) * mklin(samples[1][0].g); g += xLerp * yLerp * mklin(samples[1][1].g); b += (1 - xLerp) * (1 - yLerp) * mklin(samples[0][0].b); b += (1 - xLerp) * yLerp * mklin(samples[0][1].b); b += xLerp * (1 - yLerp) * mklin(samples[1][0].b); b += xLerp * yLerp * mklin(samples[1][1].b); return RGBColor{ uint8_t(unlin(r)), uint8_t(unlin(g)), uint8_t(unlin(b)) }; } inline RGBColor nearest(const Bitmap& img, double x, double y) { int xfloor = int(::floor(x)); int yfloor = int(::floor(y)); return img.get(xfloor, yfloor); } Bitmap MandelVideoGenerator::overlay(const Bitmap& outer, const Bitmap& inner, long bw, long bh, double scale, double oversizeFactor) { printf("%lf\n", scale); Bitmap ret{ bw, bh }; double outerLeft = outer.width * (1 - scale / oversizeFactor / oversizeFactor) / 2; double outerTop = outer.height * (1 - scale / oversizeFactor / oversizeFactor) / 2; double outerWidth = outer.width * scale / oversizeFactor / oversizeFactor; double outerHeight = outer.height * scale / oversizeFactor / oversizeFactor; double innerLeft = outer.width * (1 - scale / oversizeFactor) / 2; double innerTop = outer.height * (1 - scale / oversizeFactor) / 2; double innerWidth = outer.width * scale / oversizeFactor; double innerHeight = outer.height * scale / oversizeFactor; double lerpVal = ::log(1.0 / scale) / ::log(oversizeFactor); printf("lerpval: %f\n", lerpVal); auto before = std::chrono::high_resolution_clock::now(); #pragma omp parallel for schedule(static, 1) for (int i = 0; i < ret.height; i++) { for (int j = 0; j < ret.width; j++) { double newJ = outerLeft + outerWidth * j / ret.width; double newI = outerTop + outerHeight * i / ret.height; RGBColor a = biliniear(outer, newJ, newI); double innJ = innerLeft + innerWidth * j / ret.width; double innI = innerTop + innerHeight * i / ret.height; RGBColor b = biliniear(inner, innJ, innI); double lerpVal = -::log(scale) / ::log(oversizeFactor); RGBColor lerped = lerpColors(b, a, lerpVal); ret.get(j, i) = lerped; } } auto after = std::chrono::high_resolution_clock::now(); //printf("gradient applied in: %lld microseconds\n", std::chrono::duration_cast(after - before).count()); fflush(stdout); /*for (int i = 0; i < ret.height * ret.width; i++) { ret.pixels[i] = outer.pixels[i]; }*/ return ret; }