#include #include class BitSieve { using uint64_t = std::uint64_t; /** * Stores the bits in this bitSieve. */ std::vector bits; /** * Length is how many bits this sieve holds. */ int length; /** * A small sieve used to filter out multiples of small primes in a search * sieve. */ static BitSieve smallSieve = new BitSieve(); /** * Construct a "small sieve" with a base of 0. This constructor is * used internally to generate the set of "small primes" whose multiples * are excluded from sieves generated by the main (package private) * constructor, BitSieve(BigInteger base, int searchLen). The length * of the sieve generated by this constructor was chosen for performance; * it controls a tradeoff between how much time is spent constructing * other sieves, and how much time is wasted testing composite candidates * for primality. The length was chosen experimentally to yield good * performance. */ BitSieve() { length = 150 * 64; bits = std::vector((unitIndex(length - 1) + 1)); // Mark 1 as composite set(0); int nextIndex = 1; int nextPrime = 3; // Find primes and remove their multiples from sieve do { sieveSingle(length, nextIndex + nextPrime, nextPrime); nextIndex = sieveSearch(length, nextIndex + 1); nextPrime = 2*nextIndex + 1; } while((nextIndex > 0) && (nextPrime < length)); } /** * Construct a bit sieve of searchLen bits used for finding prime number * candidates. The new sieve begins at the specified base, which must * be even. */ BitSieve(BigInteger base, int searchLen) { /* * Candidates are indicated by clear bits in the sieve. As a candidates * nonprimality is calculated, a bit is set in the sieve to eliminate * it. To reduce storage space and increase efficiency, no even numbers * are represented in the sieve (each bit in the sieve represents an * odd number). */ bits = std::vector((unitIndex(length - 1) + 1)); length = searchLen; int start = 0; int step = smallSieve.sieveSearch(smallSieve.length, start); int convertedStep = (step *2) + 1; // Construct the large sieve at an even offset specified by base MutableBigInteger b(base); MutableBigInteger q; do { // Calculate base mod convertedStep start = b.divideOneWord(convertedStep, q); // Take each multiple of step out of sieve start = convertedStep - start; if (start%2 == 0) start += convertedStep; sieveSingle(searchLen, (start-1)/2, convertedStep); // Find next prime from small sieve step = smallSieve.sieveSearch(smallSieve.length, step+1); convertedStep = (step *2) + 1; } while (step > 0); } /** * Given a bit index return unit index containing it. */ static int unitIndex(unsigned int bitIndex) { return bitIndex >> 6; } /** * Return a unit that masks the specified bit in its unit. */ static long bit(unsigned int bitIndex) { return 1ULL << (bitIndex & ((1<<6) - 1)); } /** * Get the value of the bit at the specified index. */ bool get(unsigned int bitIndex) { unsigned int unitIndex = unitIndex(bitIndex); return ((bits[unitIndex] & bit(bitIndex)) != 0); } /** * Set the bit at the specified index. */ void set(unsigned int bitIndex) { unsigned int unitIndex = unitIndex(bitIndex); bits[unitIndex] |= bit(bitIndex); } /** * This method returns the index of the first clear bit in the search * array that occurs at or after start. It will not search past the * specified limit. It returns -1 if there is no such clear bit. */ int sieveSearch(unsigned int limit, unsigned int start) { if (start >= limit) return -1; int index = start; do { if (!get(index)) return index; index++; } while(index < limit-1); return -1; } /** * Sieve a single set of multiples out of the sieve. Begin to remove * multiples of the specified step starting at the specified start index, * up to the specified limit. */ void sieveSingle(int limit, int start, int step) { while(start < limit) { set(start); start += step; } } /** * Test probable primes in the sieve and return successful candidates. */ BigInteger retrieve(const BigInteger& initValue, unsigned int certainty, java.util.Random random) { // Examine the sieve one long at a time to find possible primes int offset = 1; for (int i=0; i>= 1; offset += 2; } } return BigInteger(0); } }