|
@@ -0,0 +1,3374 @@
|
|
|
+#include <vector>
|
|
|
+#include <cstdint>
|
|
|
+#include <cassert>
|
|
|
+using std::uint64_t;
|
|
|
+class BigInteger{
|
|
|
+ const int signum;
|
|
|
+ std::vector<int> mag;
|
|
|
+ int bitCount;
|
|
|
+ int bitLength;
|
|
|
+ int lowestSetBit;
|
|
|
+ int firstNonzeroIntNum;
|
|
|
+ const static uint64_t LONG_MASK = 0xffffffffL;
|
|
|
+ static const int MAX_MAG_LENGTH = Integer.MAX_VALUE / Integer.SIZE + 1;
|
|
|
+ static const int PRIME_SEARCH_BIT_LENGTH_LIMIT = 500000000;
|
|
|
+ static const int KARATSUBA_THRESHOLD = 80;
|
|
|
+ static const int TOOM_COOK_THRESHOLD = 240;
|
|
|
+ static const int KARATSUBA_SQUARE_THRESHOLD = 128;
|
|
|
+ static const int TOOM_COOK_SQUARE_THRESHOLD = 216;
|
|
|
+ static const int BURNIKEL_ZIEGLER_THRESHOLD = 80;
|
|
|
+ static const int BURNIKEL_ZIEGLER_OFFSET = 40;
|
|
|
+ static const int SCHOENHAGE_BASE_CONVERSION_THRESHOLD = 20;
|
|
|
+ static const int MULTIPLY_SQUARE_THRESHOLD = 20;
|
|
|
+ static const int MONTGOMERY_INTRINSIC_THRESHOLD = 512;
|
|
|
+ BigInteger(std::vector<char> val) {
|
|
|
+ assert(val.size() != 0);
|
|
|
+ if (val[0] < 0) {
|
|
|
+ mag = makePositive(val);
|
|
|
+ signum = -1;
|
|
|
+ } else {
|
|
|
+ mag = stripLeadingZeroBytes(val);
|
|
|
+ signum = (mag.length == 0 ? 0 : 1);
|
|
|
+ }
|
|
|
+ if (mag.size() >= MAX_MAG_LENGTH) {
|
|
|
+ checkRange();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger(std::vector<int> val) {
|
|
|
+ assert(val.size() != 0);
|
|
|
+
|
|
|
+ if (val[0] < 0) {
|
|
|
+ mag = makePositive(val);
|
|
|
+ signum = -1;
|
|
|
+ } else {
|
|
|
+ mag = trustedStripLeadingZeroInts(val);
|
|
|
+ signum = (mag.size() == 0 ? 0 : 1);
|
|
|
+ }
|
|
|
+ if (mag.size() >= MAX_MAG_LENGTH) {
|
|
|
+ checkRange();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger(int signum, std::vector<char> magnitude) {
|
|
|
+ this.mag = stripLeadingZeroBytes(magnitude);
|
|
|
+
|
|
|
+ assert(!(signum < -1 || signum > 1));
|
|
|
+
|
|
|
+ if (this.mag.length == 0) {
|
|
|
+ this.signum = 0;
|
|
|
+ } else {
|
|
|
+ assert(signum != 0);
|
|
|
+ this.signum = signum;
|
|
|
+ }
|
|
|
+ if (mag.size() >= MAX_MAG_LENGTH) {
|
|
|
+ checkRange();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger(int signum, std::vector<int> magnitude) {
|
|
|
+ this.mag = stripLeadingZeroInts(magnitude);
|
|
|
+
|
|
|
+ assert(!(signum < -1 || signum > 1));
|
|
|
+
|
|
|
+ if (this.mag.length == 0) {
|
|
|
+ this.signum = 0;
|
|
|
+ } else {
|
|
|
+ assert(signum != 0);
|
|
|
+ this.signum = signum;
|
|
|
+ }
|
|
|
+ if (mag.length >= MAX_MAG_LENGTH) {
|
|
|
+ checkRange();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ * Constructs a new BigInteger using a char array with radix=10.
|
|
|
+ * Sign is precalculated outside and not allowed in the val.
|
|
|
+ */
|
|
|
+ BigInteger(std::vector<char> val, int sign, int len) {
|
|
|
+ int cursor = 0, numDigits;
|
|
|
+
|
|
|
+
|
|
|
+ while (cursor < len && Character.digit(val[cursor], 10) == 0) {
|
|
|
+ cursor++;
|
|
|
+ }
|
|
|
+ if (cursor == len) {
|
|
|
+ signum = 0;
|
|
|
+ mag = ZERO.mag;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ numDigits = len - cursor;
|
|
|
+ signum = sign;
|
|
|
+
|
|
|
+ unsigned int numWords;
|
|
|
+ if (len < 10) {
|
|
|
+ numWords = 1;
|
|
|
+ } else {
|
|
|
+ uint64_t numBits = ((numDigits * bitsPerDigit[10]) >>> 10) + 1;
|
|
|
+ if (numBits + 31 >= (1L << 32)) {
|
|
|
+ reportOverflow();
|
|
|
+ }
|
|
|
+ numWords = (int) (numBits + 31) >>> 5;
|
|
|
+ }
|
|
|
+ std::vector<int> magnitude(numBits);
|
|
|
+
|
|
|
+
|
|
|
+ int firstGroupLen = numDigits % digitsPerInt[10];
|
|
|
+ if (firstGroupLen == 0)
|
|
|
+ firstGroupLen = digitsPerInt[10];
|
|
|
+ magnitude[numWords - 1] = parseInt(val, cursor, cursor += firstGroupLen);
|
|
|
+
|
|
|
+
|
|
|
+ while (cursor < len) {
|
|
|
+ int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]);
|
|
|
+ destructiveMulAdd(magnitude, intRadix[10], groupVal);
|
|
|
+ }
|
|
|
+ mag = trustedStripLeadingZeroInts(magnitude);
|
|
|
+ if (mag.length >= MAX_MAG_LENGTH) {
|
|
|
+ checkRange();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ int digit(char a){
|
|
|
+ assert((int)(a - '0') < 10 && (int)(a - '0') >= 0);
|
|
|
+ return (int)(a - '0');
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ int parseInt(const std::vector<char>& source, int start, int end) {
|
|
|
+ int result = digit(source[start++]);
|
|
|
+
|
|
|
+ for (int index = start; index < end; index++) {
|
|
|
+ int nextVal = digit(source[index]);
|
|
|
+ result = 10 * result + nextVal;
|
|
|
+ }
|
|
|
+
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ static uint64_t bitsPerDigit[] = { 0, 0,
|
|
|
+ 1024, 1624, 2048, 2378, 2648, 2875, 3072, 3247, 3402, 3543, 3672,
|
|
|
+ 3790, 3899, 4001, 4096, 4186, 4271, 4350, 4426, 4498, 4567, 4633,
|
|
|
+ 4696, 4756, 4814, 4870, 4923, 4975, 5025, 5074, 5120, 5166, 5210,
|
|
|
+ 5253, 5295};
|
|
|
+
|
|
|
+
|
|
|
+ static void destructiveMulAdd(std::vector<int>& x, int y, int z) {
|
|
|
+
|
|
|
+ uint64_t ylong = y & LONG_MASK;
|
|
|
+ uint64_t zlong = z & LONG_MASK;
|
|
|
+ int len = x.length;
|
|
|
+
|
|
|
+ uint64_t product = 0;
|
|
|
+ uint64_t carry = 0;
|
|
|
+ for (int i = len-1; i >= 0; i--) {
|
|
|
+ product = ylong * (x[i] & LONG_MASK) + carry;
|
|
|
+ x[i] = (int)product;
|
|
|
+ carry = product >>> 32;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ uint64_t sum = (x[len-1] & LONG_MASK) + zlong;
|
|
|
+ x[len-1] = (int)sum;
|
|
|
+ carry = sum >> 32;
|
|
|
+ for (int i = len-2; i >= 0; i--) {
|
|
|
+ sum = (x[i] & LONG_MASK) + carry;
|
|
|
+ x[i] = (int)sum;
|
|
|
+ carry = sum >> 32;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger(std::string val) : BigInteger(val, 10) {
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger(int numBits, std::mt19937_64& rnd) : BigInteger(1, randomBits(numBits, rnd)) {
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ static std::vector<char> randomBits(unsigned int numBits, std::mt19937_64& rnd) {
|
|
|
+ unsigned int numBytes = (unsigned int)(((uint64_t)numBits+7)/8);
|
|
|
+ std::vector<char> randomBits(numBytes);
|
|
|
+ std::uniform_int_distribution<char> dis(-128,127);
|
|
|
+
|
|
|
+ if (numBytes > 0) {
|
|
|
+ std::generate(randomBits.begin(), randomBits.end(), [&](){return dis(rnd)});
|
|
|
+ int excessBits = 8*numBytes - numBits;
|
|
|
+ randomBits[0] &= (1 << (8-excessBits)) - 1;
|
|
|
+ }
|
|
|
+ return randomBits;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger(int bitLength, int certainty, std::mt19937_64& rnd) {
|
|
|
+ BigInteger prime;
|
|
|
+
|
|
|
+ assert(bitLength >= 2);
|
|
|
+ prime = (bitLength < SMALL_PRIME_THRESHOLD
|
|
|
+ ? smallPrime(bitLength, certainty, rnd)
|
|
|
+ : largePrime(bitLength, certainty, rnd));
|
|
|
+ signum = 1;
|
|
|
+ mag = prime.mag;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ static const int SMALL_PRIME_THRESHOLD = 95;
|
|
|
+
|
|
|
+
|
|
|
+ static const int DEFAULT_PRIME_CERTAINTY = 100;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ if (bitLength < 2)
|
|
|
+ throw new ArithmeticException("bitLength < 2");
|
|
|
+
|
|
|
+ return (bitLength < SMALL_PRIME_THRESHOLD ?
|
|
|
+ smallPrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd) :
|
|
|
+ largePrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd));
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static BigInteger smallPrime(int bitLength, int certainty, Random rnd) {
|
|
|
+ int magLen = (bitLength + 31) >>> 5;
|
|
|
+ int temp[] = new int[magLen];
|
|
|
+ int highBit = 1 << ((bitLength+31) & 0x1f);
|
|
|
+ int highMask = (highBit << 1) - 1;
|
|
|
+
|
|
|
+ while (true) {
|
|
|
+
|
|
|
+ for (int i=0; i < magLen; i++)
|
|
|
+ temp[i] = rnd.nextInt();
|
|
|
+ temp[0] = (temp[0] & highMask) | highBit;
|
|
|
+ if (bitLength > 2)
|
|
|
+ temp[magLen-1] |= 1;
|
|
|
+
|
|
|
+ BigInteger p = new BigInteger(temp, 1);
|
|
|
+
|
|
|
+
|
|
|
+ if (bitLength > 6) {
|
|
|
+ long r = p.remainder(SMALL_PRIME_PRODUCT).longValue();
|
|
|
+ if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) ||
|
|
|
+ (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
|
|
|
+ (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0))
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ if (bitLength < 4)
|
|
|
+ return p;
|
|
|
+
|
|
|
+
|
|
|
+ if (p.primeToCertainty(certainty, rnd))
|
|
|
+ return p;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ static const BigInteger SMALL_PRIME_PRODUCT
|
|
|
+ = valueOf(3L*5*7*11*13*17*19*23*29*31*37*41);
|
|
|
+
|
|
|
+
|
|
|
+ static BigInteger largePrime(int bitLength, int certainty, Random rnd) {
|
|
|
+ BigInteger p;
|
|
|
+ p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
|
|
|
+ p.mag[p.mag.length-1] &= 0xfffffffe;
|
|
|
+
|
|
|
+
|
|
|
+ int searchLen = getPrimeSearchLen(bitLength);
|
|
|
+ BitSieve searchSieve = new BitSieve(p, searchLen);
|
|
|
+ BigInteger candidate = searchSieve.retrieve(p, certainty, rnd);
|
|
|
+
|
|
|
+ while ((candidate == null) || (candidate.bitLength() != bitLength)) {
|
|
|
+ p = p.add(BigInteger.valueOf(2*searchLen));
|
|
|
+ if (p.bitLength() != bitLength)
|
|
|
+ p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
|
|
|
+ p.mag[p.mag.length-1] &= 0xfffffffe;
|
|
|
+ searchSieve = new BitSieve(p, searchLen);
|
|
|
+ candidate = searchSieve.retrieve(p, certainty, rnd);
|
|
|
+ }
|
|
|
+ return candidate;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger nextProbablePrime() {
|
|
|
+ if (this.signum < 0)
|
|
|
+ throw new ArithmeticException("start < 0: " + this);
|
|
|
+
|
|
|
+
|
|
|
+ if ((this.signum == 0) || this.equals(ONE))
|
|
|
+ return TWO;
|
|
|
+
|
|
|
+ BigInteger result = this.add(ONE);
|
|
|
+
|
|
|
+
|
|
|
+ if (result.bitLength() < SMALL_PRIME_THRESHOLD) {
|
|
|
+
|
|
|
+
|
|
|
+ if (!result.testBit(0))
|
|
|
+ result = result.add(ONE);
|
|
|
+
|
|
|
+ while (true) {
|
|
|
+
|
|
|
+ if (result.bitLength() > 6) {
|
|
|
+ long r = result.remainder(SMALL_PRIME_PRODUCT).longValue();
|
|
|
+ if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) ||
|
|
|
+ (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
|
|
|
+ (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) {
|
|
|
+ result = result.add(TWO);
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ if (result.bitLength() < 4)
|
|
|
+ return result;
|
|
|
+
|
|
|
+
|
|
|
+ if (result.primeToCertainty(DEFAULT_PRIME_CERTAINTY, null))
|
|
|
+ return result;
|
|
|
+
|
|
|
+ result = result.add(TWO);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ if (result.testBit(0))
|
|
|
+ result = result.subtract(ONE);
|
|
|
+
|
|
|
+
|
|
|
+ int searchLen = getPrimeSearchLen(result.bitLength());
|
|
|
+
|
|
|
+ while (true) {
|
|
|
+ BitSieve searchSieve = new BitSieve(result, searchLen);
|
|
|
+ BigInteger candidate = searchSieve.retrieve(result,
|
|
|
+ DEFAULT_PRIME_CERTAINTY, null);
|
|
|
+ if (candidate != null)
|
|
|
+ return candidate;
|
|
|
+ result = result.add(BigInteger.valueOf(2 * searchLen));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ static int getPrimeSearchLen(int bitLength) {
|
|
|
+ if (bitLength > PRIME_SEARCH_BIT_LENGTH_LIMIT + 1) {
|
|
|
+ throw new ArithmeticException("Prime search implementation restriction on bitLength");
|
|
|
+ }
|
|
|
+ return bitLength / 20 * 64;
|
|
|
+ }*/
|
|
|
+
|
|
|
+
|
|
|
+ bool primeToCertainty(int certainty, std::mt19937_64& random) {
|
|
|
+ int rounds = 0;
|
|
|
+ int n = (std::min(certainty, Integer.MAX_VALUE-1)+1)/2;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ int sizeInBits = bitLength();
|
|
|
+ if (sizeInBits < 100) {
|
|
|
+ rounds = 50;
|
|
|
+ rounds = n < rounds ? n : rounds;
|
|
|
+ return passesMillerRabin(rounds, random);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (sizeInBits < 256) {
|
|
|
+ rounds = 27;
|
|
|
+ } else if (sizeInBits < 512) {
|
|
|
+ rounds = 15;
|
|
|
+ } else if (sizeInBits < 768) {
|
|
|
+ rounds = 8;
|
|
|
+ } else if (sizeInBits < 1024) {
|
|
|
+ rounds = 4;
|
|
|
+ } else {
|
|
|
+ rounds = 2;
|
|
|
+ }
|
|
|
+ rounds = n < rounds ? n : rounds;
|
|
|
+
|
|
|
+ return passesMillerRabin(rounds, random) && passesLucasLehmer();
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ boolean passesLucasLehmer() {
|
|
|
+ BigInteger thisPlusOne = this.add(ONE);
|
|
|
+
|
|
|
+
|
|
|
+ int d = 5;
|
|
|
+ while (jacobiSymbol(d, this) != -1) {
|
|
|
+
|
|
|
+ d = (d < 0) ? Math.abs(d)+2 : -(d+2);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger u = lucasLehmerSequence(d, thisPlusOne, this);
|
|
|
+
|
|
|
+
|
|
|
+ return u.mod(this).equals(ZERO);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int jacobiSymbol(int p, BigInteger n) {
|
|
|
+ if (p == 0)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+
|
|
|
+ int j = 1;
|
|
|
+ int u = n.mag[n.mag.length-1];
|
|
|
+
|
|
|
+
|
|
|
+ if (p < 0) {
|
|
|
+ p = -p;
|
|
|
+ int n8 = u & 7;
|
|
|
+ if ((n8 == 3) || (n8 == 7))
|
|
|
+ j = -j;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ while ((p & 3) == 0)
|
|
|
+ p >>= 2;
|
|
|
+ if ((p & 1) == 0) {
|
|
|
+ p >>= 1;
|
|
|
+ if (((u ^ (u>>1)) & 2) != 0)
|
|
|
+ j = -j;
|
|
|
+ }
|
|
|
+ if (p == 1)
|
|
|
+ return j;
|
|
|
+
|
|
|
+ if ((p & u & 2) != 0)
|
|
|
+ j = -j;
|
|
|
+
|
|
|
+ u = n.mod(BigInteger.valueOf(p)).intValue();
|
|
|
+
|
|
|
+
|
|
|
+ while (u != 0) {
|
|
|
+ while ((u & 3) == 0)
|
|
|
+ u >>= 2;
|
|
|
+ if ((u & 1) == 0) {
|
|
|
+ u >>= 1;
|
|
|
+ if (((p ^ (p>>1)) & 2) != 0)
|
|
|
+ j = -j;
|
|
|
+ }
|
|
|
+ if (u == 1)
|
|
|
+ return j;
|
|
|
+
|
|
|
+ assert (u < p);
|
|
|
+ int t = u; u = p; p = t;
|
|
|
+ if ((u & p & 2) != 0)
|
|
|
+ j = -j;
|
|
|
+
|
|
|
+ u %= p;
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ static BigInteger lucasLehmerSequence(int z, BigInteger k, BigInteger n) {
|
|
|
+ BigInteger d = BigInteger.valueOf(z);
|
|
|
+ BigInteger u = ONE; BigInteger u2;
|
|
|
+ BigInteger v = ONE; BigInteger v2;
|
|
|
+
|
|
|
+ for (int i=k.bitLength()-2; i >= 0; i--) {
|
|
|
+ u2 = u.multiply(v).mod(n);
|
|
|
+
|
|
|
+ v2 = v.square().add(d.multiply(u.square())).mod(n);
|
|
|
+ if (v2.testBit(0))
|
|
|
+ v2 = v2.subtract(n);
|
|
|
+
|
|
|
+ v2 = v2.shiftRight(1);
|
|
|
+
|
|
|
+ u = u2; v = v2;
|
|
|
+ if (k.testBit(i)) {
|
|
|
+ u2 = u.add(v).mod(n);
|
|
|
+ if (u2.testBit(0))
|
|
|
+ u2 = u2.subtract(n);
|
|
|
+
|
|
|
+ u2 = u2.shiftRight(1);
|
|
|
+ v2 = v.add(d.multiply(u)).mod(n);
|
|
|
+ if (v2.testBit(0))
|
|
|
+ v2 = v2.subtract(n);
|
|
|
+ v2 = v2.shiftRight(1);
|
|
|
+
|
|
|
+ u = u2; v = v2;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return u;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ bool passesMillerRabin(int iterations, std::mt19937_64& rnd) {
|
|
|
+
|
|
|
+ BigInteger thisMinusOne = this->subtract(ONE);
|
|
|
+ BigInteger m = thisMinusOne;
|
|
|
+ int a = m.getLowestSetBit();
|
|
|
+ m = m.shiftRight(a);
|
|
|
+
|
|
|
+
|
|
|
+ if (rnd == null) {
|
|
|
+ rnd = ThreadLocalRandom.current();
|
|
|
+ }
|
|
|
+ for (int i=0; i < iterations; i++) {
|
|
|
+
|
|
|
+ BigInteger b;
|
|
|
+ do {
|
|
|
+ b = new BigInteger(this.bitLength(), rnd);
|
|
|
+ } while (b.compareTo(ONE) <= 0 || b.compareTo(this) >= 0);
|
|
|
+
|
|
|
+ int j = 0;
|
|
|
+ BigInteger z = b.modPow(m, this);
|
|
|
+ while (!((j == 0 && z.equals(ONE)) || z.equals(thisMinusOne))) {
|
|
|
+ if (j > 0 && z.equals(ONE) || ++j == a)
|
|
|
+ return false;
|
|
|
+ z = z.modPow(TWO, this);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger(int[] magnitude, int signum) {
|
|
|
+ this.signum = (magnitude.length == 0 ? 0 : signum);
|
|
|
+ this.mag = magnitude;
|
|
|
+ if (mag.length >= MAX_MAG_LENGTH) {
|
|
|
+ checkRange();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger(byte[] magnitude, int signum) {
|
|
|
+ this.signum = (magnitude.length == 0 ? 0 : signum);
|
|
|
+ this.mag = stripLeadingZeroBytes(magnitude);
|
|
|
+ if (mag.length >= MAX_MAG_LENGTH) {
|
|
|
+ checkRange();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ void checkRange() {
|
|
|
+ if (mag.length > MAX_MAG_LENGTH || mag.length == MAX_MAG_LENGTH && mag[0] < 0) {
|
|
|
+ reportOverflow();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ static void reportOverflow() {
|
|
|
+ throw new ArithmeticException("BigInteger would overflow supported range");
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ static BigInteger valueOf(long val) {
|
|
|
+
|
|
|
+ if (val == 0)
|
|
|
+ return ZERO;
|
|
|
+ if (val > 0 && val <= MAX_CONSTANT)
|
|
|
+ return posConst[(int) val];
|
|
|
+ else if (val < 0 && val >= -MAX_CONSTANT)
|
|
|
+ return negConst[(int) -val];
|
|
|
+
|
|
|
+ return new BigInteger(val);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger(long val) {
|
|
|
+ if (val < 0) {
|
|
|
+ val = -val;
|
|
|
+ signum = -1;
|
|
|
+ } else {
|
|
|
+ signum = 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ int highWord = (int)(val >>> 32);
|
|
|
+ if (highWord == 0) {
|
|
|
+ mag = new int[1];
|
|
|
+ mag[0] = (int)val;
|
|
|
+ } else {
|
|
|
+ mag = new int[2];
|
|
|
+ mag[0] = highWord;
|
|
|
+ mag[1] = (int)val;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static BigInteger valueOf(int val[]) {
|
|
|
+ return (val[0] > 0 ? new BigInteger(val, 1) : new BigInteger(val));
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ const static int MAX_CONSTANT = 16;
|
|
|
+ static BigInteger posConst[] = new BigInteger[MAX_CONSTANT+1];
|
|
|
+ static BigInteger negConst[] = new BigInteger[MAX_CONSTANT+1];
|
|
|
+
|
|
|
+
|
|
|
+ static volatile BigInteger[][] powerCache;
|
|
|
+
|
|
|
+
|
|
|
+ static const double[] logCache;
|
|
|
+
|
|
|
+
|
|
|
+ static const double LOG_TWO = Math.log(2.0);
|
|
|
+
|
|
|
+ static {
|
|
|
+ for (int i = 1; i <= MAX_CONSTANT; i++) {
|
|
|
+ int[] magnitude = new int[1];
|
|
|
+ magnitude[0] = i;
|
|
|
+ posConst[i] = new BigInteger(magnitude, 1);
|
|
|
+ negConst[i] = new BigInteger(magnitude, -1);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ * Initialize the cache of radix^(2^x) values used for base conversion
|
|
|
+ * with just the very first value. Additional values will be created
|
|
|
+ * on demand.
|
|
|
+ */
|
|
|
+ powerCache = new BigInteger[Character.MAX_RADIX+1][];
|
|
|
+ logCache = new double[Character.MAX_RADIX+1];
|
|
|
+
|
|
|
+ for (int i=Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) {
|
|
|
+ powerCache[i] = new BigInteger[] { BigInteger.valueOf(i) };
|
|
|
+ logCache[i] = Math.log(i);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static const BigInteger ZERO = new BigInteger(new int[0], 0);
|
|
|
+
|
|
|
+
|
|
|
+ static const BigInteger ONE = valueOf(1);
|
|
|
+
|
|
|
+
|
|
|
+ static const BigInteger TWO = valueOf(2);
|
|
|
+
|
|
|
+
|
|
|
+ static const BigInteger NEGATIVE_ONE = valueOf(-1);
|
|
|
+
|
|
|
+
|
|
|
+ static const BigInteger TEN = valueOf(10);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger add(BigInteger val) {
|
|
|
+ if (val.signum == 0)
|
|
|
+ return this;
|
|
|
+ if (signum == 0)
|
|
|
+ return val;
|
|
|
+ if (val.signum == signum)
|
|
|
+ return new BigInteger(add(mag, val.mag), signum);
|
|
|
+
|
|
|
+ int cmp = compareMagnitude(val);
|
|
|
+ if (cmp == 0)
|
|
|
+ return ZERO;
|
|
|
+ int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
|
|
|
+ : subtract(val.mag, mag));
|
|
|
+ resultMag = trustedStripLeadingZeroInts(resultMag);
|
|
|
+
|
|
|
+ return new BigInteger(resultMag, cmp == signum ? 1 : -1);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger add(long val) {
|
|
|
+ if (val == 0)
|
|
|
+ return this;
|
|
|
+ if (signum == 0)
|
|
|
+ return valueOf(val);
|
|
|
+ if (Long.signum(val) == signum)
|
|
|
+ return new BigInteger(add(mag, Math.abs(val)), signum);
|
|
|
+ int cmp = compareMagnitude(val);
|
|
|
+ if (cmp == 0)
|
|
|
+ return ZERO;
|
|
|
+ int[] resultMag = (cmp > 0 ? subtract(mag, Math.abs(val)) : subtract(Math.abs(val), mag));
|
|
|
+ resultMag = trustedStripLeadingZeroInts(resultMag);
|
|
|
+ return new BigInteger(resultMag, cmp == signum ? 1 : -1);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int[] add(int[] x, long val) {
|
|
|
+ int[] y;
|
|
|
+ long sum = 0;
|
|
|
+ int xIndex = x.length;
|
|
|
+ int[] result;
|
|
|
+ int highWord = (int)(val >>> 32);
|
|
|
+ if (highWord == 0) {
|
|
|
+ result = new int[xIndex];
|
|
|
+ sum = (x[--xIndex] & LONG_MASK) + val;
|
|
|
+ result[xIndex] = (int)sum;
|
|
|
+ } else {
|
|
|
+ if (xIndex == 1) {
|
|
|
+ result = new int[2];
|
|
|
+ sum = val + (x[0] & LONG_MASK);
|
|
|
+ result[1] = (int)sum;
|
|
|
+ result[0] = (int)(sum >>> 32);
|
|
|
+ return result;
|
|
|
+ } else {
|
|
|
+ result = new int[xIndex];
|
|
|
+ sum = (x[--xIndex] & LONG_MASK) + (val & LONG_MASK);
|
|
|
+ result[xIndex] = (int)sum;
|
|
|
+ sum = (x[--xIndex] & LONG_MASK) + (highWord & LONG_MASK) + (sum >>> 32);
|
|
|
+ result[xIndex] = (int)sum;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ bool carry = (sum >>> 32 != 0);
|
|
|
+ while (xIndex > 0 && carry)
|
|
|
+ carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
|
|
|
+
|
|
|
+ while (xIndex > 0)
|
|
|
+ result[--xIndex] = x[xIndex];
|
|
|
+
|
|
|
+ if (carry) {
|
|
|
+ int bigger[] = new int[result.length + 1];
|
|
|
+ System.arraycopy(result, 0, bigger, 1, result.length);
|
|
|
+ bigger[0] = 0x01;
|
|
|
+ return bigger;
|
|
|
+ }
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int[] add(int[] x, int[] y) {
|
|
|
+
|
|
|
+ if (x.length < y.length) {
|
|
|
+ int[] tmp = x;
|
|
|
+ x = y;
|
|
|
+ y = tmp;
|
|
|
+ }
|
|
|
+
|
|
|
+ int xIndex = x.length;
|
|
|
+ int yIndex = y.length;
|
|
|
+ int result[] = new int[xIndex];
|
|
|
+ long sum = 0;
|
|
|
+ if (yIndex == 1) {
|
|
|
+ sum = (x[--xIndex] & LONG_MASK) + (y[0] & LONG_MASK) ;
|
|
|
+ result[xIndex] = (int)sum;
|
|
|
+ } else {
|
|
|
+
|
|
|
+ while (yIndex > 0) {
|
|
|
+ sum = (x[--xIndex] & LONG_MASK) +
|
|
|
+ (y[--yIndex] & LONG_MASK) + (sum >>> 32);
|
|
|
+ result[xIndex] = (int)sum;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ boolean carry = (sum >>> 32 != 0);
|
|
|
+ while (xIndex > 0 && carry)
|
|
|
+ carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
|
|
|
+
|
|
|
+
|
|
|
+ while (xIndex > 0)
|
|
|
+ result[--xIndex] = x[xIndex];
|
|
|
+
|
|
|
+
|
|
|
+ if (carry) {
|
|
|
+ int bigger[] = new int[result.length + 1];
|
|
|
+ System.arraycopy(result, 0, bigger, 1, result.length);
|
|
|
+ bigger[0] = 0x01;
|
|
|
+ return bigger;
|
|
|
+ }
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+ static int[] subtract(long val, int[] little) {
|
|
|
+ int highWord = (int)(val >>> 32);
|
|
|
+ if (highWord == 0) {
|
|
|
+ int result[] = new int[1];
|
|
|
+ result[0] = (int)(val - (little[0] & LONG_MASK));
|
|
|
+ return result;
|
|
|
+ } else {
|
|
|
+ int result[] = new int[2];
|
|
|
+ if (little.length == 1) {
|
|
|
+ long difference = ((int)val & LONG_MASK) - (little[0] & LONG_MASK);
|
|
|
+ result[1] = (int)difference;
|
|
|
+
|
|
|
+ boolean borrow = (difference >> 32 != 0);
|
|
|
+ if (borrow) {
|
|
|
+ result[0] = highWord - 1;
|
|
|
+ } else {
|
|
|
+ result[0] = highWord;
|
|
|
+ }
|
|
|
+ return result;
|
|
|
+ } else {
|
|
|
+ long difference = ((int)val & LONG_MASK) - (little[1] & LONG_MASK);
|
|
|
+ result[1] = (int)difference;
|
|
|
+ difference = (highWord & LONG_MASK) - (little[0] & LONG_MASK) + (difference >> 32);
|
|
|
+ result[0] = (int)difference;
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int[] subtract(int[] big, long val) {
|
|
|
+ int highWord = (int)(val >>> 32);
|
|
|
+ int bigIndex = big.length;
|
|
|
+ int result[] = new int[bigIndex];
|
|
|
+ long difference = 0;
|
|
|
+
|
|
|
+ if (highWord == 0) {
|
|
|
+ difference = (big[--bigIndex] & LONG_MASK) - val;
|
|
|
+ result[bigIndex] = (int)difference;
|
|
|
+ } else {
|
|
|
+ difference = (big[--bigIndex] & LONG_MASK) - (val & LONG_MASK);
|
|
|
+ result[bigIndex] = (int)difference;
|
|
|
+ difference = (big[--bigIndex] & LONG_MASK) - (highWord & LONG_MASK) + (difference >> 32);
|
|
|
+ result[bigIndex] = (int)difference;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ boolean borrow = (difference >> 32 != 0);
|
|
|
+ while (bigIndex > 0 && borrow)
|
|
|
+ borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
|
|
|
+
|
|
|
+
|
|
|
+ while (bigIndex > 0)
|
|
|
+ result[--bigIndex] = big[bigIndex];
|
|
|
+
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger subtract(BigInteger val) {
|
|
|
+ if (val.signum == 0)
|
|
|
+ return this;
|
|
|
+ if (signum == 0)
|
|
|
+ return val.negate();
|
|
|
+ if (val.signum != signum)
|
|
|
+ return new BigInteger(add(mag, val.mag), signum);
|
|
|
+
|
|
|
+ int cmp = compareMagnitude(val);
|
|
|
+ if (cmp == 0)
|
|
|
+ return ZERO;
|
|
|
+ int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
|
|
|
+ : subtract(val.mag, mag));
|
|
|
+ resultMag = trustedStripLeadingZeroInts(resultMag);
|
|
|
+ return new BigInteger(resultMag, cmp == signum ? 1 : -1);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int[] subtract(int[] big, int[] little) {
|
|
|
+ int bigIndex = big.length;
|
|
|
+ int result[] = new int[bigIndex];
|
|
|
+ int littleIndex = little.length;
|
|
|
+ long difference = 0;
|
|
|
+
|
|
|
+
|
|
|
+ while (littleIndex > 0) {
|
|
|
+ difference = (big[--bigIndex] & LONG_MASK) -
|
|
|
+ (little[--littleIndex] & LONG_MASK) +
|
|
|
+ (difference >> 32);
|
|
|
+ result[bigIndex] = (int)difference;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ boolean borrow = (difference >> 32 != 0);
|
|
|
+ while (bigIndex > 0 && borrow)
|
|
|
+ borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
|
|
|
+
|
|
|
+
|
|
|
+ while (bigIndex > 0)
|
|
|
+ result[--bigIndex] = big[bigIndex];
|
|
|
+
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger multiply(BigInteger val) {
|
|
|
+ if (val.signum == 0 || signum == 0)
|
|
|
+ return ZERO;
|
|
|
+
|
|
|
+ int xlen = mag.length;
|
|
|
+
|
|
|
+ if (val == this && xlen > MULTIPLY_SQUARE_THRESHOLD) {
|
|
|
+ return square();
|
|
|
+ }
|
|
|
+
|
|
|
+ int ylen = val.mag.length;
|
|
|
+
|
|
|
+ if ((xlen < KARATSUBA_THRESHOLD) || (ylen < KARATSUBA_THRESHOLD)) {
|
|
|
+ int resultSign = signum == val.signum ? 1 : -1;
|
|
|
+ if (val.mag.length == 1) {
|
|
|
+ return multiplyByInt(mag,val.mag[0], resultSign);
|
|
|
+ }
|
|
|
+ if (mag.length == 1) {
|
|
|
+ return multiplyByInt(val.mag,mag[0], resultSign);
|
|
|
+ }
|
|
|
+ int[] result = multiplyToLen(mag, xlen,
|
|
|
+ val.mag, ylen, null);
|
|
|
+ result = trustedStripLeadingZeroInts(result);
|
|
|
+ return new BigInteger(result, resultSign);
|
|
|
+ } else {
|
|
|
+ if ((xlen < TOOM_COOK_THRESHOLD) && (ylen < TOOM_COOK_THRESHOLD)) {
|
|
|
+ return multiplyKaratsuba(this, val);
|
|
|
+ } else {
|
|
|
+ return multiplyToomCook3(this, val);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ static BigInteger multiplyByInt(int[] x, int y, int sign) {
|
|
|
+ if (Integer.bitCount(y) == 1) {
|
|
|
+ return new BigInteger(shiftLeft(x,Integer.numberOfTrailingZeros(y)), sign);
|
|
|
+ }
|
|
|
+ int xlen = x.length;
|
|
|
+ int[] rmag = new int[xlen + 1];
|
|
|
+ long carry = 0;
|
|
|
+ long yl = y & LONG_MASK;
|
|
|
+ int rstart = rmag.length - 1;
|
|
|
+ for (int i = xlen - 1; i >= 0; i--) {
|
|
|
+ long product = (x[i] & LONG_MASK) * yl + carry;
|
|
|
+ rmag[rstart--] = (int)product;
|
|
|
+ carry = product >>> 32;
|
|
|
+ }
|
|
|
+ if (carry == 0L) {
|
|
|
+ rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
|
|
|
+ } else {
|
|
|
+ rmag[rstart] = (int)carry;
|
|
|
+ }
|
|
|
+ return new BigInteger(rmag, sign);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger multiply(long v) {
|
|
|
+ if (v == 0 || signum == 0)
|
|
|
+ return ZERO;
|
|
|
+ if (v == Long.MIN_VALUE)
|
|
|
+ return multiply(BigInteger.valueOf(v));
|
|
|
+ int rsign = (v > 0 ? signum : -signum);
|
|
|
+ if (v < 0)
|
|
|
+ v = -v;
|
|
|
+ long dh = v >>> 32;
|
|
|
+ long dl = v & LONG_MASK;
|
|
|
+
|
|
|
+ int xlen = mag.length;
|
|
|
+ int[] value = mag;
|
|
|
+ int[] rmag = (dh == 0L) ? (new int[xlen + 1]) : (new int[xlen + 2]);
|
|
|
+ long carry = 0;
|
|
|
+ int rstart = rmag.length - 1;
|
|
|
+ for (int i = xlen - 1; i >= 0; i--) {
|
|
|
+ long product = (value[i] & LONG_MASK) * dl + carry;
|
|
|
+ rmag[rstart--] = (int)product;
|
|
|
+ carry = product >>> 32;
|
|
|
+ }
|
|
|
+ rmag[rstart] = (int)carry;
|
|
|
+ if (dh != 0L) {
|
|
|
+ carry = 0;
|
|
|
+ rstart = rmag.length - 2;
|
|
|
+ for (int i = xlen - 1; i >= 0; i--) {
|
|
|
+ long product = (value[i] & LONG_MASK) * dh +
|
|
|
+ (rmag[rstart] & LONG_MASK) + carry;
|
|
|
+ rmag[rstart--] = (int)product;
|
|
|
+ carry = product >>> 32;
|
|
|
+ }
|
|
|
+ rmag[0] = (int)carry;
|
|
|
+ }
|
|
|
+ if (carry == 0L)
|
|
|
+ rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
|
|
|
+ return new BigInteger(rmag, rsign);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) {
|
|
|
+ int xstart = xlen - 1;
|
|
|
+ int ystart = ylen - 1;
|
|
|
+
|
|
|
+ if (z == null || z.length < (xlen+ ylen))
|
|
|
+ z = new int[xlen+ylen];
|
|
|
+
|
|
|
+ long carry = 0;
|
|
|
+ for (int j=ystart, k=ystart+1+xstart; j >= 0; j--, k--) {
|
|
|
+ long product = (y[j] & LONG_MASK) *
|
|
|
+ (x[xstart] & LONG_MASK) + carry;
|
|
|
+ z[k] = (int)product;
|
|
|
+ carry = product >>> 32;
|
|
|
+ }
|
|
|
+ z[xstart] = (int)carry;
|
|
|
+
|
|
|
+ for (int i = xstart-1; i >= 0; i--) {
|
|
|
+ carry = 0;
|
|
|
+ for (int j=ystart, k=ystart+1+i; j >= 0; j--, k--) {
|
|
|
+ long product = (y[j] & LONG_MASK) *
|
|
|
+ (x[i] & LONG_MASK) +
|
|
|
+ (z[k] & LONG_MASK) + carry;
|
|
|
+ z[k] = (int)product;
|
|
|
+ carry = product >>> 32;
|
|
|
+ }
|
|
|
+ z[i] = (int)carry;
|
|
|
+ }
|
|
|
+ return z;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static BigInteger multiplyKaratsuba(BigInteger x, BigInteger y) {
|
|
|
+ int xlen = x.mag.length;
|
|
|
+ int ylen = y.mag.length;
|
|
|
+
|
|
|
+
|
|
|
+ int half = (Math.max(xlen, ylen)+1) / 2;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger xl = x.getLower(half);
|
|
|
+ BigInteger xh = x.getUpper(half);
|
|
|
+ BigInteger yl = y.getLower(half);
|
|
|
+ BigInteger yh = y.getUpper(half);
|
|
|
+
|
|
|
+ BigInteger p1 = xh.multiply(yh);
|
|
|
+ BigInteger p2 = xl.multiply(yl);
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger p3 = xh.add(xl).multiply(yh.add(yl));
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger result = p1.shiftLeft(32*half).add(p3.subtract(p1).subtract(p2)).shiftLeft(32*half).add(p2);
|
|
|
+
|
|
|
+ if (x.signum != y.signum) {
|
|
|
+ return result.negate();
|
|
|
+ } else {
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static BigInteger multiplyToomCook3(BigInteger a, BigInteger b) {
|
|
|
+ int alen = a.mag.length;
|
|
|
+ int blen = b.mag.length;
|
|
|
+
|
|
|
+ int largest = std::max(alen, blen);
|
|
|
+
|
|
|
+
|
|
|
+ int k = (largest+2)/3;
|
|
|
+
|
|
|
+
|
|
|
+ int r = largest - 2*k;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger a0, a1, a2, b0, b1, b2;
|
|
|
+ a2 = a.getToomSlice(k, r, 0, largest);
|
|
|
+ a1 = a.getToomSlice(k, r, 1, largest);
|
|
|
+ a0 = a.getToomSlice(k, r, 2, largest);
|
|
|
+ b2 = b.getToomSlice(k, r, 0, largest);
|
|
|
+ b1 = b.getToomSlice(k, r, 1, largest);
|
|
|
+ b0 = b.getToomSlice(k, r, 2, largest);
|
|
|
+
|
|
|
+ BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1, db1;
|
|
|
+
|
|
|
+ v0 = a0.multiply(b0);
|
|
|
+ da1 = a2.add(a0);
|
|
|
+ db1 = b2.add(b0);
|
|
|
+ vm1 = da1.subtract(a1).multiply(db1.subtract(b1));
|
|
|
+ da1 = da1.add(a1);
|
|
|
+ db1 = db1.add(b1);
|
|
|
+ v1 = da1.multiply(db1);
|
|
|
+ v2 = da1.add(a2).shiftLeft(1).subtract(a0).multiply(
|
|
|
+ db1.add(b2).shiftLeft(1).subtract(b0));
|
|
|
+ vinf = a2.multiply(b2);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ t2 = v2.subtract(vm1).exactDivideBy3();
|
|
|
+ tm1 = v1.subtract(vm1).shiftRight(1);
|
|
|
+ t1 = v1.subtract(v0);
|
|
|
+ t2 = t2.subtract(t1).shiftRight(1);
|
|
|
+ t1 = t1.subtract(tm1).subtract(vinf);
|
|
|
+ t2 = t2.subtract(vinf.shiftLeft(1));
|
|
|
+ tm1 = tm1.subtract(t2);
|
|
|
+
|
|
|
+
|
|
|
+ int ss = k*32;
|
|
|
+
|
|
|
+ BigInteger result = vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0);
|
|
|
+
|
|
|
+ if (a.signum != b.signum) {
|
|
|
+ return result.negate();
|
|
|
+ } else {
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger getToomSlice(int lowerSize, int upperSize, int slice,
|
|
|
+ int fullsize) {
|
|
|
+ int start, end, sliceSize, len, offset;
|
|
|
+
|
|
|
+ len = mag.length;
|
|
|
+ offset = fullsize - len;
|
|
|
+
|
|
|
+ if (slice == 0) {
|
|
|
+ start = 0 - offset;
|
|
|
+ end = upperSize - 1 - offset;
|
|
|
+ } else {
|
|
|
+ start = upperSize + (slice-1)*lowerSize - offset;
|
|
|
+ end = start + lowerSize - 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (start < 0) {
|
|
|
+ start = 0;
|
|
|
+ }
|
|
|
+ if (end < 0) {
|
|
|
+ return ZERO;
|
|
|
+ }
|
|
|
+
|
|
|
+ sliceSize = (end-start) + 1;
|
|
|
+
|
|
|
+ if (sliceSize <= 0) {
|
|
|
+ return ZERO;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ if (start == 0 && sliceSize >= len) {
|
|
|
+ return this.abs();
|
|
|
+ }
|
|
|
+
|
|
|
+ int intSlice[] = new int[sliceSize];
|
|
|
+ System.arraycopy(mag, start, intSlice, 0, sliceSize);
|
|
|
+
|
|
|
+ return new BigInteger(trustedStripLeadingZeroInts(intSlice), 1);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger exactDivideBy3() {
|
|
|
+ int len = mag.length;
|
|
|
+ int[] result = new int[len];
|
|
|
+ long x, w, q, borrow;
|
|
|
+ borrow = 0L;
|
|
|
+ for (int i=len-1; i >= 0; i--) {
|
|
|
+ x = (mag[i] & LONG_MASK);
|
|
|
+ w = x - borrow;
|
|
|
+ if (borrow > x) {
|
|
|
+ borrow = 1L;
|
|
|
+ } else {
|
|
|
+ borrow = 0L;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ q = (w * 0xAAAAAAABL) & LONG_MASK;
|
|
|
+ result[i] = (int) q;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ if (q >= 0x55555556L) {
|
|
|
+ borrow++;
|
|
|
+ if (q >= 0xAAAAAAABL)
|
|
|
+ borrow++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ result = trustedStripLeadingZeroInts(result);
|
|
|
+ return new BigInteger(result, signum);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger getLower(int n) {
|
|
|
+ int len = mag.length;
|
|
|
+
|
|
|
+ if (len <= n) {
|
|
|
+ return abs();
|
|
|
+ }
|
|
|
+
|
|
|
+ int lowerInts[] = new int[n];
|
|
|
+ System.arraycopy(mag, len-n, lowerInts, 0, n);
|
|
|
+
|
|
|
+ return new BigInteger(trustedStripLeadingZeroInts(lowerInts), 1);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger getUpper(int n) {
|
|
|
+ int len = mag.length;
|
|
|
+
|
|
|
+ if (len <= n) {
|
|
|
+ return ZERO;
|
|
|
+ }
|
|
|
+
|
|
|
+ int upperLen = len - n;
|
|
|
+ int upperInts[] = new int[upperLen];
|
|
|
+ System.arraycopy(mag, 0, upperInts, 0, upperLen);
|
|
|
+
|
|
|
+ return new BigInteger(trustedStripLeadingZeroInts(upperInts), 1);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger square() {
|
|
|
+ if (signum == 0) {
|
|
|
+ return ZERO;
|
|
|
+ }
|
|
|
+ int len = mag.length;
|
|
|
+
|
|
|
+ if (len < KARATSUBA_SQUARE_THRESHOLD) {
|
|
|
+ int[] z = squareToLen(mag, len, null);
|
|
|
+ return new BigInteger(trustedStripLeadingZeroInts(z), 1);
|
|
|
+ } else {
|
|
|
+ if (len < TOOM_COOK_SQUARE_THRESHOLD) {
|
|
|
+ return squareKaratsuba();
|
|
|
+ } else {
|
|
|
+ return squareToomCook3();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static const int[] squareToLen(int[] x, int len, int[] z) {
|
|
|
+ int zlen = len << 1;
|
|
|
+ if (z == null || z.length < zlen)
|
|
|
+ z = new int[zlen];
|
|
|
+
|
|
|
+
|
|
|
+ implSquareToLenChecks(x, len, z, zlen);
|
|
|
+ return implSquareToLen(x, len, z, zlen);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static void implSquareToLenChecks(int[] x, int len, int[] z, int zlen) throws RuntimeException {
|
|
|
+ if (len < 1) {
|
|
|
+ throw new IllegalArgumentException("invalid input length: " + len);
|
|
|
+ }
|
|
|
+ if (len > x.length) {
|
|
|
+ throw new IllegalArgumentException("input length out of bound: " +
|
|
|
+ len + " > " + x.length);
|
|
|
+ }
|
|
|
+ if (len * 2 > z.length) {
|
|
|
+ throw new IllegalArgumentException("input length out of bound: " +
|
|
|
+ (len * 2) + " > " + z.length);
|
|
|
+ }
|
|
|
+ if (zlen < 1) {
|
|
|
+ throw new IllegalArgumentException("invalid input length: " + zlen);
|
|
|
+ }
|
|
|
+ if (zlen > z.length) {
|
|
|
+ throw new IllegalArgumentException("input length out of bound: " +
|
|
|
+ len + " > " + z.length);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static const int[] implSquareToLen(int[] x, int len, int[] z, int zlen) {
|
|
|
+
|
|
|
+ * The algorithm used here is adapted from Colin Plumb's C library.
|
|
|
+ * Technique: Consider the partial products in the multiplication
|
|
|
+ * of "abcde" by itself:
|
|
|
+ *
|
|
|
+ * a b c d e
|
|
|
+ * * a b c d e
|
|
|
+ * ==================
|
|
|
+ * ae be ce de ee
|
|
|
+ * ad bd cd dd de
|
|
|
+ * ac bc cc cd ce
|
|
|
+ * ab bb bc bd be
|
|
|
+ * aa ab ac ad ae
|
|
|
+ *
|
|
|
+ * Note that everything above the main diagonal:
|
|
|
+ * ae be ce de = (abcd) * e
|
|
|
+ * ad bd cd = (abc) * d
|
|
|
+ * ac bc = (ab) * c
|
|
|
+ * ab = (a) * b
|
|
|
+ *
|
|
|
+ * is a copy of everything below the main diagonal:
|
|
|
+ * de
|
|
|
+ * cd ce
|
|
|
+ * bc bd be
|
|
|
+ * ab ac ad ae
|
|
|
+ *
|
|
|
+ * Thus, the sum is 2 * (off the diagonal) + diagonal.
|
|
|
+ *
|
|
|
+ * This is accumulated beginning with the diagonal (which
|
|
|
+ * consist of the squares of the digits of the input), which is then
|
|
|
+ * divided by two, the off-diagonal added, and multiplied by two
|
|
|
+ * again. The low bit is simply a copy of the low bit of the
|
|
|
+ * input, so it doesn't need special care.
|
|
|
+ */
|
|
|
+
|
|
|
+
|
|
|
+ int lastProductLowWord = 0;
|
|
|
+ for (int j=0, i=0; j < len; j++) {
|
|
|
+ long piece = (x[j] & LONG_MASK);
|
|
|
+ long product = piece * piece;
|
|
|
+ z[i++] = (lastProductLowWord << 31) | (int)(product >>> 33);
|
|
|
+ z[i++] = (int)(product >>> 1);
|
|
|
+ lastProductLowWord = (int)product;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ for (int i=len, offset=1; i > 0; i--, offset+=2) {
|
|
|
+ int t = x[i-1];
|
|
|
+ t = mulAdd(z, x, offset, i-1, t);
|
|
|
+ addOne(z, offset-1, i, t);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ primitiveLeftShift(z, zlen, 1);
|
|
|
+ z[zlen-1] |= x[len-1] & 1;
|
|
|
+
|
|
|
+ return z;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger squareKaratsuba() {
|
|
|
+ int half = (mag.length+1) / 2;
|
|
|
+
|
|
|
+ BigInteger xl = getLower(half);
|
|
|
+ BigInteger xh = getUpper(half);
|
|
|
+
|
|
|
+ BigInteger xhs = xh.square();
|
|
|
+ BigInteger xls = xl.square();
|
|
|
+
|
|
|
+
|
|
|
+ return xhs.shiftLeft(half*32).add(xl.add(xh).square().subtract(xhs.add(xls))).shiftLeft(half*32).add(xls);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger squareToomCook3() {
|
|
|
+ int len = mag.length;
|
|
|
+
|
|
|
+
|
|
|
+ int k = (len+2)/3;
|
|
|
+
|
|
|
+
|
|
|
+ int r = len - 2*k;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger a0, a1, a2;
|
|
|
+ a2 = getToomSlice(k, r, 0, len);
|
|
|
+ a1 = getToomSlice(k, r, 1, len);
|
|
|
+ a0 = getToomSlice(k, r, 2, len);
|
|
|
+ BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1;
|
|
|
+
|
|
|
+ v0 = a0.square();
|
|
|
+ da1 = a2.add(a0);
|
|
|
+ vm1 = da1.subtract(a1).square();
|
|
|
+ da1 = da1.add(a1);
|
|
|
+ v1 = da1.square();
|
|
|
+ vinf = a2.square();
|
|
|
+ v2 = da1.add(a2).shiftLeft(1).subtract(a0).square();
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ t2 = v2.subtract(vm1).exactDivideBy3();
|
|
|
+ tm1 = v1.subtract(vm1).shiftRight(1);
|
|
|
+ t1 = v1.subtract(v0);
|
|
|
+ t2 = t2.subtract(t1).shiftRight(1);
|
|
|
+ t1 = t1.subtract(tm1).subtract(vinf);
|
|
|
+ t2 = t2.subtract(vinf.shiftLeft(1));
|
|
|
+ tm1 = tm1.subtract(t2);
|
|
|
+
|
|
|
+
|
|
|
+ int ss = k*32;
|
|
|
+
|
|
|
+ return vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger divide(BigInteger val) {
|
|
|
+ if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
|
|
|
+ mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
|
|
|
+ return divideKnuth(val);
|
|
|
+ } else {
|
|
|
+ return divideBurnikelZiegler(val);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger divideKnuth(BigInteger val) {
|
|
|
+ MutableBigInteger q = new MutableBigInteger(),
|
|
|
+ a = new MutableBigInteger(this.mag),
|
|
|
+ b = new MutableBigInteger(val.mag);
|
|
|
+
|
|
|
+ a.divideKnuth(b, q, false);
|
|
|
+ return q.toBigInteger(this.signum * val.signum);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger[] divideAndRemainder(BigInteger val) {
|
|
|
+ if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
|
|
|
+ mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
|
|
|
+ return divideAndRemainderKnuth(val);
|
|
|
+ } else {
|
|
|
+ return divideAndRemainderBurnikelZiegler(val);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger[] divideAndRemainderKnuth(BigInteger val) {
|
|
|
+ BigInteger[] result = new BigInteger[2];
|
|
|
+ MutableBigInteger q = new MutableBigInteger(),
|
|
|
+ a = new MutableBigInteger(this.mag),
|
|
|
+ b = new MutableBigInteger(val.mag);
|
|
|
+ MutableBigInteger r = a.divideKnuth(b, q);
|
|
|
+ result[0] = q.toBigInteger(this.signum == val.signum ? 1 : -1);
|
|
|
+ result[1] = r.toBigInteger(this.signum);
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger remainder(BigInteger val) {
|
|
|
+ if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
|
|
|
+ mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
|
|
|
+ return remainderKnuth(val);
|
|
|
+ } else {
|
|
|
+ return remainderBurnikelZiegler(val);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger remainderKnuth(BigInteger val) {
|
|
|
+ MutableBigInteger q = new MutableBigInteger(),
|
|
|
+ a = new MutableBigInteger(this.mag),
|
|
|
+ b = new MutableBigInteger(val.mag);
|
|
|
+
|
|
|
+ return a.divideKnuth(b, q).toBigInteger(this.signum);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger divideBurnikelZiegler(BigInteger val) {
|
|
|
+ return divideAndRemainderBurnikelZiegler(val)[0];
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger remainderBurnikelZiegler(BigInteger val) {
|
|
|
+ return divideAndRemainderBurnikelZiegler(val)[1];
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger[] divideAndRemainderBurnikelZiegler(BigInteger val) {
|
|
|
+ MutableBigInteger q = new MutableBigInteger();
|
|
|
+ MutableBigInteger r = new MutableBigInteger(this).divideAndRemainderBurnikelZiegler(new MutableBigInteger(val), q);
|
|
|
+ BigInteger qBigInt = q.isZero() ? ZERO : q.toBigInteger(signum*val.signum);
|
|
|
+ BigInteger rBigInt = r.isZero() ? ZERO : r.toBigInteger(signum);
|
|
|
+ return new BigInteger[] {qBigInt, rBigInt};
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger pow(int exponent) {
|
|
|
+ if (exponent < 0) {
|
|
|
+ throw new ArithmeticException("Negative exponent");
|
|
|
+ }
|
|
|
+ if (signum == 0) {
|
|
|
+ return (exponent == 0 ? ONE : this);
|
|
|
+ }
|
|
|
+
|
|
|
+ BigInteger partToSquare = this.abs();
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ int powersOfTwo = partToSquare.getLowestSetBit();
|
|
|
+ long bitsToShift = (long)powersOfTwo * exponent;
|
|
|
+ if (bitsToShift > Integer.MAX_VALUE) {
|
|
|
+ reportOverflow();
|
|
|
+ }
|
|
|
+
|
|
|
+ int remainingBits;
|
|
|
+
|
|
|
+
|
|
|
+ if (powersOfTwo > 0) {
|
|
|
+ partToSquare = partToSquare.shiftRight(powersOfTwo);
|
|
|
+ remainingBits = partToSquare.bitLength();
|
|
|
+ if (remainingBits == 1) {
|
|
|
+ if (signum < 0 && (exponent&1) == 1) {
|
|
|
+ return NEGATIVE_ONE.shiftLeft(powersOfTwo*exponent);
|
|
|
+ } else {
|
|
|
+ return ONE.shiftLeft(powersOfTwo*exponent);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ remainingBits = partToSquare.bitLength();
|
|
|
+ if (remainingBits == 1) {
|
|
|
+ if (signum < 0 && (exponent&1) == 1) {
|
|
|
+ return NEGATIVE_ONE;
|
|
|
+ } else {
|
|
|
+ return ONE;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ long scaleFactor = (long)remainingBits * exponent;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ if (partToSquare.mag.length == 1 && scaleFactor <= 62) {
|
|
|
+
|
|
|
+ int newSign = (signum <0 && (exponent&1) == 1 ? -1 : 1);
|
|
|
+ long result = 1;
|
|
|
+ long baseToPow2 = partToSquare.mag[0] & LONG_MASK;
|
|
|
+
|
|
|
+ int workingExponent = exponent;
|
|
|
+
|
|
|
+
|
|
|
+ while (workingExponent != 0) {
|
|
|
+ if ((workingExponent & 1) == 1) {
|
|
|
+ result = result * baseToPow2;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((workingExponent >>>= 1) != 0) {
|
|
|
+ baseToPow2 = baseToPow2 * baseToPow2;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ if (powersOfTwo > 0) {
|
|
|
+ if (bitsToShift + scaleFactor <= 62) {
|
|
|
+ return valueOf((result << bitsToShift) * newSign);
|
|
|
+ } else {
|
|
|
+ return valueOf(result*newSign).shiftLeft((int) bitsToShift);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ return valueOf(result*newSign);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger answer = ONE;
|
|
|
+
|
|
|
+ int workingExponent = exponent;
|
|
|
+
|
|
|
+ while (workingExponent != 0) {
|
|
|
+ if ((workingExponent & 1) == 1) {
|
|
|
+ answer = answer.multiply(partToSquare);
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((workingExponent >>>= 1) != 0) {
|
|
|
+ partToSquare = partToSquare.square();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ if (powersOfTwo > 0) {
|
|
|
+ answer = answer.shiftLeft(powersOfTwo*exponent);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (signum < 0 && (exponent&1) == 1) {
|
|
|
+ return answer.negate();
|
|
|
+ } else {
|
|
|
+ return answer;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger gcd(BigInteger val) {
|
|
|
+ if (val.signum == 0)
|
|
|
+ return this.abs();
|
|
|
+ else if (this.signum == 0)
|
|
|
+ return val.abs();
|
|
|
+
|
|
|
+ MutableBigInteger a = new MutableBigInteger(this);
|
|
|
+ MutableBigInteger b = new MutableBigInteger(val);
|
|
|
+
|
|
|
+ MutableBigInteger result = a.hybridGCD(b);
|
|
|
+
|
|
|
+ return result.toBigInteger(1);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int bitLengthForInt(int n) {
|
|
|
+ return 32 - Integer.numberOfLeadingZeros(n);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int[] leftShift(int[] a, int len, int n) {
|
|
|
+ int nInts = n >>> 5;
|
|
|
+ int nBits = n&0x1F;
|
|
|
+ int bitsInHighWord = bitLengthForInt(a[0]);
|
|
|
+
|
|
|
+
|
|
|
+ if (n <= (32-bitsInHighWord)) {
|
|
|
+ primitiveLeftShift(a, len, nBits);
|
|
|
+ return a;
|
|
|
+ } else {
|
|
|
+ if (nBits <= (32-bitsInHighWord)) {
|
|
|
+ int result[] = new int[nInts+len];
|
|
|
+ System.arraycopy(a, 0, result, 0, len);
|
|
|
+ primitiveLeftShift(result, result.length, nBits);
|
|
|
+ return result;
|
|
|
+ } else {
|
|
|
+ int result[] = new int[nInts+len+1];
|
|
|
+ System.arraycopy(a, 0, result, 0, len);
|
|
|
+ primitiveRightShift(result, result.length, 32 - nBits);
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static void primitiveRightShift(int[] a, int len, int n) {
|
|
|
+ int n2 = 32 - n;
|
|
|
+ for (int i=len-1, c=a[i]; i > 0; i--) {
|
|
|
+ int b = c;
|
|
|
+ c = a[i-1];
|
|
|
+ a[i] = (c << n2) | (b >>> n);
|
|
|
+ }
|
|
|
+ a[0] >>>= n;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static void primitiveLeftShift(int[] a, int len, int n) {
|
|
|
+ if (len == 0 || n == 0)
|
|
|
+ return;
|
|
|
+
|
|
|
+ int n2 = 32 - n;
|
|
|
+ for (int i=0, c=a[i], m=i+len-1; i < m; i++) {
|
|
|
+ int b = c;
|
|
|
+ c = a[i+1];
|
|
|
+ a[i] = (b << n) | (c >>> n2);
|
|
|
+ }
|
|
|
+ a[len-1] <<= n;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int bitLength(int[] val, int len) {
|
|
|
+ if (len == 0)
|
|
|
+ return 0;
|
|
|
+ return ((len - 1) << 5) + bitLengthForInt(val[0]);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger abs() {
|
|
|
+ return (signum >= 0 ? this : this.negate());
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger negate() {
|
|
|
+ return new BigInteger(this.mag, -this.signum);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ int signum() {
|
|
|
+ return this.signum;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger mod(BigInteger m) {
|
|
|
+ if (m.signum <= 0)
|
|
|
+ throw new ArithmeticException("BigInteger: modulus not positive");
|
|
|
+
|
|
|
+ BigInteger result = this.remainder(m);
|
|
|
+ return (result.signum >= 0 ? result : result.add(m));
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger modPow(BigInteger exponent, BigInteger m) {
|
|
|
+ if (m.signum <= 0)
|
|
|
+ throw new ArithmeticException("BigInteger: modulus not positive");
|
|
|
+
|
|
|
+
|
|
|
+ if (exponent.signum == 0)
|
|
|
+ return (m.equals(ONE) ? ZERO : ONE);
|
|
|
+
|
|
|
+ if (this.equals(ONE))
|
|
|
+ return (m.equals(ONE) ? ZERO : ONE);
|
|
|
+
|
|
|
+ if (this.equals(ZERO) && exponent.signum >= 0)
|
|
|
+ return ZERO;
|
|
|
+
|
|
|
+ if (this.equals(negConst[1]) && (!exponent.testBit(0)))
|
|
|
+ return (m.equals(ONE) ? ZERO : ONE);
|
|
|
+
|
|
|
+ boolean invertResult;
|
|
|
+ if ((invertResult = (exponent.signum < 0)))
|
|
|
+ exponent = exponent.negate();
|
|
|
+
|
|
|
+ BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0
|
|
|
+ ? this.mod(m) : this);
|
|
|
+ BigInteger result;
|
|
|
+ if (m.testBit(0)) {
|
|
|
+ result = base.oddModPow(exponent, m);
|
|
|
+ } else {
|
|
|
+
|
|
|
+ * Even modulus. Tear it into an "odd part" (m1) and power of two
|
|
|
+ * (m2), exponentiate mod m1, manually exponentiate mod m2, and
|
|
|
+ * use Chinese Remainder Theorem to combine results.
|
|
|
+ */
|
|
|
+
|
|
|
+
|
|
|
+ int p = m.getLowestSetBit();
|
|
|
+
|
|
|
+ BigInteger m1 = m.shiftRight(p);
|
|
|
+ BigInteger m2 = ONE.shiftLeft(p);
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0
|
|
|
+ ? this.mod(m1) : this);
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger a1 = (m1.equals(ONE) ? ZERO :
|
|
|
+ base2.oddModPow(exponent, m1));
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger a2 = base.modPow2(exponent, p);
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger y1 = m2.modInverse(m1);
|
|
|
+ BigInteger y2 = m1.modInverse(m2);
|
|
|
+
|
|
|
+ if (m.mag.length < MAX_MAG_LENGTH / 2) {
|
|
|
+ result = a1.multiply(m2).multiply(y1).add(a2.multiply(m1).multiply(y2)).mod(m);
|
|
|
+ } else {
|
|
|
+ MutableBigInteger t1 = new MutableBigInteger();
|
|
|
+ new MutableBigInteger(a1.multiply(m2)).multiply(new MutableBigInteger(y1), t1);
|
|
|
+ MutableBigInteger t2 = new MutableBigInteger();
|
|
|
+ new MutableBigInteger(a2.multiply(m1)).multiply(new MutableBigInteger(y2), t2);
|
|
|
+ t1.add(t2);
|
|
|
+ MutableBigInteger q = new MutableBigInteger();
|
|
|
+ result = t1.divide(new MutableBigInteger(m), q).toBigInteger();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return (invertResult ? result.modInverse(m) : result);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ static int[] montgomeryMultiply(int[] a, int[] b, int[] n, int len, long inv,
|
|
|
+ int[] product) {
|
|
|
+ implMontgomeryMultiplyChecks(a, b, n, len, product);
|
|
|
+ if (len > MONTGOMERY_INTRINSIC_THRESHOLD) {
|
|
|
+
|
|
|
+ product = multiplyToLen(a, len, b, len, product);
|
|
|
+ return montReduce(product, n, len, (int)inv);
|
|
|
+ } else {
|
|
|
+ return implMontgomeryMultiply(a, b, n, len, inv, materialize(product, len));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ static int[] montgomerySquare(int[] a, int[] n, int len, long inv,
|
|
|
+ int[] product) {
|
|
|
+ implMontgomeryMultiplyChecks(a, a, n, len, product);
|
|
|
+ if (len > MONTGOMERY_INTRINSIC_THRESHOLD) {
|
|
|
+
|
|
|
+ product = squareToLen(a, len, product);
|
|
|
+ return montReduce(product, n, len, (int)inv);
|
|
|
+ } else {
|
|
|
+ return implMontgomerySquare(a, n, len, inv, materialize(product, len));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static void implMontgomeryMultiplyChecks
|
|
|
+ (int[] a, int[] b, int[] n, int len, int[] product) throws RuntimeException {
|
|
|
+ if (len % 2 != 0) {
|
|
|
+ throw new IllegalArgumentException("input array length must be even: " + len);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (len < 1) {
|
|
|
+ throw new IllegalArgumentException("invalid input length: " + len);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (len > a.length ||
|
|
|
+ len > b.length ||
|
|
|
+ len > n.length ||
|
|
|
+ (product != null && len > product.length)) {
|
|
|
+ throw new IllegalArgumentException("input array length out of bound: " + len);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ static int[] materialize(int[] z, int len) {
|
|
|
+ if (z == null || z.length < len)
|
|
|
+ z = new int[len];
|
|
|
+ return z;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ static int[] implMontgomeryMultiply(int[] a, int[] b, int[] n, int len,
|
|
|
+ long inv, int[] product) {
|
|
|
+ product = multiplyToLen(a, len, b, len, product);
|
|
|
+ return montReduce(product, n, len, (int)inv);
|
|
|
+ }
|
|
|
+ static int[] implMontgomerySquare(int[] a, int[] n, int len,
|
|
|
+ long inv, int[] product) {
|
|
|
+ product = squareToLen(a, len, product);
|
|
|
+ return montReduce(product, n, len, (int)inv);
|
|
|
+ }
|
|
|
+
|
|
|
+ static int[] bnExpModThreshTable = {7, 25, 81, 241, 673, 1793,
|
|
|
+ Integer.MAX_VALUE};
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger oddModPow(BigInteger y, BigInteger z) {
|
|
|
+
|
|
|
+ * The algorithm is adapted from Colin Plumb's C library.
|
|
|
+ *
|
|
|
+ * The window algorithm:
|
|
|
+ * The idea is to keep a running product of b1 = n^(high-order bits of exp)
|
|
|
+ * and then keep appending exponent bits to it. The following patterns
|
|
|
+ * apply to a 3-bit window (k = 3):
|
|
|
+ * To append 0: square
|
|
|
+ * To append 1: square, multiply by n^1
|
|
|
+ * To append 10: square, multiply by n^1, square
|
|
|
+ * To append 11: square, square, multiply by n^3
|
|
|
+ * To append 100: square, multiply by n^1, square, square
|
|
|
+ * To append 101: square, square, square, multiply by n^5
|
|
|
+ * To append 110: square, square, multiply by n^3, square
|
|
|
+ * To append 111: square, square, square, multiply by n^7
|
|
|
+ *
|
|
|
+ * Since each pattern involves only one multiply, the longer the pattern
|
|
|
+ * the better, except that a 0 (no multiplies) can be appended directly.
|
|
|
+ * We precompute a table of odd powers of n, up to 2^k, and can then
|
|
|
+ * multiply k bits of exponent at a time. Actually, assuming random
|
|
|
+ * exponents, there is on average one zero bit between needs to
|
|
|
+ * multiply (1/2 of the time there's none, 1/4 of the time there's 1,
|
|
|
+ * 1/8 of the time, there's 2, 1/32 of the time, there's 3, etc.), so
|
|
|
+ * you have to do one multiply per k+1 bits of exponent.
|
|
|
+ *
|
|
|
+ * The loop walks down the exponent, squaring the result buffer as
|
|
|
+ * it goes. There is a wbits+1 bit lookahead buffer, buf, that is
|
|
|
+ * filled with the upcoming exponent bits. (What is read after the
|
|
|
+ * end of the exponent is unimportant, but it is filled with zero here.)
|
|
|
+ * When the most-significant bit of this buffer becomes set, i.e.
|
|
|
+ * (buf & tblmask) != 0, we have to decide what pattern to multiply
|
|
|
+ * by, and when to do it. We decide, remember to do it in future
|
|
|
+ * after a suitable number of squarings have passed (e.g. a pattern
|
|
|
+ * of "100" in the buffer requires that we multiply by n^1 immediately;
|
|
|
+ * a pattern of "110" calls for multiplying by n^3 after one more
|
|
|
+ * squaring), clear the buffer, and continue.
|
|
|
+ *
|
|
|
+ * When we start, there is one more optimization: the result buffer
|
|
|
+ * is implcitly one, so squaring it or multiplying by it can be
|
|
|
+ * optimized away. Further, if we start with a pattern like "100"
|
|
|
+ * in the lookahead window, rather than placing n into the buffer
|
|
|
+ * and then starting to square it, we have already computed n^2
|
|
|
+ * to compute the odd-powers table, so we can place that into
|
|
|
+ * the buffer and save a squaring.
|
|
|
+ *
|
|
|
+ * This means that if you have a k-bit window, to compute n^z,
|
|
|
+ * where z is the high k bits of the exponent, 1/2 of the time
|
|
|
+ * it requires no squarings. 1/4 of the time, it requires 1
|
|
|
+ * squaring, ... 1/2^(k-1) of the time, it reqires k-2 squarings.
|
|
|
+ * And the remaining 1/2^(k-1) of the time, the top k bits are a
|
|
|
+ * 1 followed by k-1 0 bits, so it again only requires k-2
|
|
|
+ * squarings, not k-1. The average of these is 1. Add that
|
|
|
+ * to the one squaring we have to do to compute the table,
|
|
|
+ * and you'll see that a k-bit window saves k-2 squarings
|
|
|
+ * as well as reducing the multiplies. (It actually doesn't
|
|
|
+ * hurt in the case k = 1, either.)
|
|
|
+ */
|
|
|
+
|
|
|
+ if (y.equals(ONE))
|
|
|
+ return this;
|
|
|
+
|
|
|
+
|
|
|
+ if (signum == 0)
|
|
|
+ return ZERO;
|
|
|
+
|
|
|
+ int[] base = mag.clone();
|
|
|
+ int[] exp = y.mag;
|
|
|
+ int[] mod = z.mag;
|
|
|
+ int modLen = mod.length;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ if ((modLen & 1) != 0) {
|
|
|
+ int[] x = new int[modLen + 1];
|
|
|
+ System.arraycopy(mod, 0, x, 1, modLen);
|
|
|
+ mod = x;
|
|
|
+ modLen++;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ int wbits = 0;
|
|
|
+ int ebits = bitLength(exp, exp.length);
|
|
|
+
|
|
|
+ if ((ebits != 17) || (exp[0] != 65537)) {
|
|
|
+ while (ebits > bnExpModThreshTable[wbits]) {
|
|
|
+ wbits++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ int tblmask = 1 << wbits;
|
|
|
+
|
|
|
+
|
|
|
+ int[][] table = new int[tblmask][];
|
|
|
+ for (int i=0; i < tblmask; i++)
|
|
|
+ table[i] = new int[modLen];
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ long n0 = (mod[modLen-1] & LONG_MASK) + ((mod[modLen-2] & LONG_MASK) << 32);
|
|
|
+ long inv = -MutableBigInteger.inverseMod64(n0);
|
|
|
+
|
|
|
+
|
|
|
+ int[] a = leftShift(base, base.length, modLen << 5);
|
|
|
+
|
|
|
+ MutableBigInteger q = new MutableBigInteger(),
|
|
|
+ a2 = new MutableBigInteger(a),
|
|
|
+ b2 = new MutableBigInteger(mod);
|
|
|
+ b2.normalize();
|
|
|
+
|
|
|
+
|
|
|
+ MutableBigInteger r= a2.divide(b2, q);
|
|
|
+ table[0] = r.toIntArray();
|
|
|
+
|
|
|
+
|
|
|
+ if (table[0].length < modLen) {
|
|
|
+ int offset = modLen - table[0].length;
|
|
|
+ int[] t2 = new int[modLen];
|
|
|
+ System.arraycopy(table[0], 0, t2, offset, table[0].length);
|
|
|
+ table[0] = t2;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ int[] b = montgomerySquare(table[0], mod, modLen, inv, null);
|
|
|
+
|
|
|
+
|
|
|
+ int[] t = Arrays.copyOf(b, modLen);
|
|
|
+
|
|
|
+
|
|
|
+ for (int i=1; i < tblmask; i++) {
|
|
|
+ table[i] = montgomeryMultiply(t, table[i-1], mod, modLen, inv, null);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ int bitpos = 1 << ((ebits-1) & (32-1));
|
|
|
+
|
|
|
+ int buf = 0;
|
|
|
+ int elen = exp.length;
|
|
|
+ int eIndex = 0;
|
|
|
+ for (int i = 0; i <= wbits; i++) {
|
|
|
+ buf = (buf << 1) | (((exp[eIndex] & bitpos) != 0)?1:0);
|
|
|
+ bitpos >>>= 1;
|
|
|
+ if (bitpos == 0) {
|
|
|
+ eIndex++;
|
|
|
+ bitpos = 1 << (32-1);
|
|
|
+ elen--;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ int multpos = ebits;
|
|
|
+
|
|
|
+
|
|
|
+ ebits--;
|
|
|
+ boolean isone = true;
|
|
|
+
|
|
|
+ multpos = ebits - wbits;
|
|
|
+ while ((buf & 1) == 0) {
|
|
|
+ buf >>>= 1;
|
|
|
+ multpos++;
|
|
|
+ }
|
|
|
+
|
|
|
+ int[] mult = table[buf >>> 1];
|
|
|
+
|
|
|
+ buf = 0;
|
|
|
+ if (multpos == ebits)
|
|
|
+ isone = false;
|
|
|
+
|
|
|
+
|
|
|
+ while (true) {
|
|
|
+ ebits--;
|
|
|
+
|
|
|
+ buf <<= 1;
|
|
|
+
|
|
|
+ if (elen != 0) {
|
|
|
+ buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0;
|
|
|
+ bitpos >>>= 1;
|
|
|
+ if (bitpos == 0) {
|
|
|
+ eIndex++;
|
|
|
+ bitpos = 1 << (32-1);
|
|
|
+ elen--;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ if ((buf & tblmask) != 0) {
|
|
|
+ multpos = ebits - wbits;
|
|
|
+ while ((buf & 1) == 0) {
|
|
|
+ buf >>>= 1;
|
|
|
+ multpos++;
|
|
|
+ }
|
|
|
+ mult = table[buf >>> 1];
|
|
|
+ buf = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ if (ebits == multpos) {
|
|
|
+ if (isone) {
|
|
|
+ b = mult.clone();
|
|
|
+ isone = false;
|
|
|
+ } else {
|
|
|
+ t = b;
|
|
|
+ a = montgomeryMultiply(t, mult, mod, modLen, inv, a);
|
|
|
+ t = a; a = b; b = t;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ if (ebits == 0)
|
|
|
+ break;
|
|
|
+
|
|
|
+
|
|
|
+ if (!isone) {
|
|
|
+ t = b;
|
|
|
+ a = montgomerySquare(t, mod, modLen, inv, a);
|
|
|
+ t = a; a = b; b = t;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ int[] t2 = new int[2*modLen];
|
|
|
+ System.arraycopy(b, 0, t2, modLen, modLen);
|
|
|
+
|
|
|
+ b = montReduce(t2, mod, modLen, (int)inv);
|
|
|
+
|
|
|
+ t2 = Arrays.copyOf(b, modLen);
|
|
|
+
|
|
|
+ return new BigInteger(1, t2);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int[] montReduce(int[] n, int[] mod, int mlen, int inv) {
|
|
|
+ int c=0;
|
|
|
+ int len = mlen;
|
|
|
+ int offset=0;
|
|
|
+
|
|
|
+ do {
|
|
|
+ int nEnd = n[n.length-1-offset];
|
|
|
+ int carry = mulAdd(n, mod, offset, mlen, inv * nEnd);
|
|
|
+ c += addOne(n, offset, mlen, carry);
|
|
|
+ offset++;
|
|
|
+ } while (--len > 0);
|
|
|
+
|
|
|
+ while (c > 0)
|
|
|
+ c += subN(n, mod, mlen);
|
|
|
+
|
|
|
+ while (intArrayCmpToLen(n, mod, mlen) >= 0)
|
|
|
+ subN(n, mod, mlen);
|
|
|
+
|
|
|
+ return n;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ * Returns -1, 0 or +1 as big-endian unsigned int array arg1 is less than,
|
|
|
+ * equal to, or greater than arg2 up to length len.
|
|
|
+ */
|
|
|
+ static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) {
|
|
|
+ for (int i=0; i < len; i++) {
|
|
|
+ long b1 = arg1[i] & LONG_MASK;
|
|
|
+ long b2 = arg2[i] & LONG_MASK;
|
|
|
+ if (b1 < b2)
|
|
|
+ return -1;
|
|
|
+ if (b1 > b2)
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int subN(int[] a, int[] b, int len) {
|
|
|
+ long sum = 0;
|
|
|
+
|
|
|
+ while (--len >= 0) {
|
|
|
+ sum = (a[len] & LONG_MASK) -
|
|
|
+ (b[len] & LONG_MASK) + (sum >> 32);
|
|
|
+ a[len] = (int)sum;
|
|
|
+ }
|
|
|
+
|
|
|
+ return (int)(sum >> 32);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int mulAdd(int[] out, int[] in, int offset, int len, int k) {
|
|
|
+ implMulAddCheck(out, in, offset, len, k);
|
|
|
+ return implMulAdd(out, in, offset, len, k);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static void implMulAddCheck(int[] out, int[] in, int offset, int len, int k) {
|
|
|
+ if (len > in.length) {
|
|
|
+ throw new IllegalArgumentException("input length is out of bound: " + len + " > " + in.length);
|
|
|
+ }
|
|
|
+ if (offset < 0) {
|
|
|
+ throw new IllegalArgumentException("input offset is invalid: " + offset);
|
|
|
+ }
|
|
|
+ if (offset > (out.length - 1)) {
|
|
|
+ throw new IllegalArgumentException("input offset is out of bound: " + offset + " > " + (out.length - 1));
|
|
|
+ }
|
|
|
+ if (len > (out.length - offset)) {
|
|
|
+ throw new IllegalArgumentException("input len is out of bound: " + len + " > " + (out.length - offset));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int implMulAdd(int[] out, int[] in, int offset, int len, int k) {
|
|
|
+ long kLong = k & LONG_MASK;
|
|
|
+ long carry = 0;
|
|
|
+
|
|
|
+ offset = out.length-offset - 1;
|
|
|
+ for (int j=len-1; j >= 0; j--) {
|
|
|
+ long product = (in[j] & LONG_MASK) * kLong +
|
|
|
+ (out[offset] & LONG_MASK) + carry;
|
|
|
+ out[offset--] = (int)product;
|
|
|
+ carry = product >>> 32;
|
|
|
+ }
|
|
|
+ return (int)carry;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int addOne(int[] a, int offset, int mlen, int carry) {
|
|
|
+ offset = a.length-1-mlen-offset;
|
|
|
+ long t = (a[offset] & LONG_MASK) + (carry & LONG_MASK);
|
|
|
+
|
|
|
+ a[offset] = (int)t;
|
|
|
+ if ((t >>> 32) == 0)
|
|
|
+ return 0;
|
|
|
+ while (--mlen >= 0) {
|
|
|
+ if (--offset < 0) {
|
|
|
+ return 1;
|
|
|
+ } else {
|
|
|
+ a[offset]++;
|
|
|
+ if (a[offset] != 0)
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger modPow2(BigInteger exponent, int p) {
|
|
|
+
|
|
|
+ * Perform exponentiation using repeated squaring trick, chopping off
|
|
|
+ * high order bits as indicated by modulus.
|
|
|
+ */
|
|
|
+ BigInteger result = ONE;
|
|
|
+ BigInteger baseToPow2 = this.mod2(p);
|
|
|
+ int expOffset = 0;
|
|
|
+
|
|
|
+ int limit = exponent.bitLength();
|
|
|
+
|
|
|
+ if (this.testBit(0))
|
|
|
+ limit = (p-1) < limit ? (p-1) : limit;
|
|
|
+
|
|
|
+ while (expOffset < limit) {
|
|
|
+ if (exponent.testBit(expOffset))
|
|
|
+ result = result.multiply(baseToPow2).mod2(p);
|
|
|
+ expOffset++;
|
|
|
+ if (expOffset < limit)
|
|
|
+ baseToPow2 = baseToPow2.square().mod2(p);
|
|
|
+ }
|
|
|
+
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger mod2(int p) {
|
|
|
+ if (bitLength() <= p)
|
|
|
+ return this;
|
|
|
+
|
|
|
+
|
|
|
+ int numInts = (p + 31) >>> 5;
|
|
|
+ int[] mag = new int[numInts];
|
|
|
+ System.arraycopy(this.mag, (this.mag.length - numInts), mag, 0, numInts);
|
|
|
+
|
|
|
+
|
|
|
+ int excessBits = (numInts << 5) - p;
|
|
|
+ mag[0] &= (1L << (32-excessBits)) - 1;
|
|
|
+
|
|
|
+ return (mag[0] == 0 ? new BigInteger(1, mag) : new BigInteger(mag, 1));
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger modInverse(BigInteger m) {
|
|
|
+ if (m.signum != 1)
|
|
|
+ throw new ArithmeticException("BigInteger: modulus not positive");
|
|
|
+
|
|
|
+ if (m.equals(ONE))
|
|
|
+ return ZERO;
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger modVal = this;
|
|
|
+ if (signum < 0 || (this.compareMagnitude(m) >= 0))
|
|
|
+ modVal = this.mod(m);
|
|
|
+
|
|
|
+ if (modVal.equals(ONE))
|
|
|
+ return ONE;
|
|
|
+
|
|
|
+ MutableBigInteger a = new MutableBigInteger(modVal);
|
|
|
+ MutableBigInteger b = new MutableBigInteger(m);
|
|
|
+
|
|
|
+ MutableBigInteger result = a.mutableModInverse(b);
|
|
|
+ return result.toBigInteger(1);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger shiftLeft(int n) {
|
|
|
+ if (signum == 0)
|
|
|
+ return ZERO;
|
|
|
+ if (n > 0) {
|
|
|
+ return new BigInteger(shiftLeft(mag, n), signum);
|
|
|
+ } else if (n == 0) {
|
|
|
+ return this;
|
|
|
+ } else {
|
|
|
+
|
|
|
+
|
|
|
+ return shiftRightImpl(-n);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int[] shiftLeft(int[] mag, int n) {
|
|
|
+ int nInts = n >>> 5;
|
|
|
+ int nBits = n & 0x1f;
|
|
|
+ int magLen = mag.length;
|
|
|
+ int newMag[] = null;
|
|
|
+
|
|
|
+ if (nBits == 0) {
|
|
|
+ newMag = new int[magLen + nInts];
|
|
|
+ System.arraycopy(mag, 0, newMag, 0, magLen);
|
|
|
+ } else {
|
|
|
+ int i = 0;
|
|
|
+ int nBits2 = 32 - nBits;
|
|
|
+ int highBits = mag[0] >>> nBits2;
|
|
|
+ if (highBits != 0) {
|
|
|
+ newMag = new int[magLen + nInts + 1];
|
|
|
+ newMag[i++] = highBits;
|
|
|
+ } else {
|
|
|
+ newMag = new int[magLen + nInts];
|
|
|
+ }
|
|
|
+ int j=0;
|
|
|
+ while (j < magLen-1)
|
|
|
+ newMag[i++] = mag[j++] << nBits | mag[j] >>> nBits2;
|
|
|
+ newMag[i] = mag[j] << nBits;
|
|
|
+ }
|
|
|
+ return newMag;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger shiftRight(int n) {
|
|
|
+ if (signum == 0)
|
|
|
+ return ZERO;
|
|
|
+ if (n > 0) {
|
|
|
+ return shiftRightImpl(n);
|
|
|
+ } else if (n == 0) {
|
|
|
+ return this;
|
|
|
+ } else {
|
|
|
+
|
|
|
+
|
|
|
+ return new BigInteger(shiftLeft(mag, -n), signum);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger shiftRightImpl(int n) {
|
|
|
+ int nInts = n >>> 5;
|
|
|
+ int nBits = n & 0x1f;
|
|
|
+ int magLen = mag.length;
|
|
|
+ int newMag[] = null;
|
|
|
+
|
|
|
+
|
|
|
+ if (nInts >= magLen)
|
|
|
+ return (signum >= 0 ? ZERO : negConst[1]);
|
|
|
+
|
|
|
+ if (nBits == 0) {
|
|
|
+ int newMagLen = magLen - nInts;
|
|
|
+ newMag = Arrays.copyOf(mag, newMagLen);
|
|
|
+ } else {
|
|
|
+ int i = 0;
|
|
|
+ int highBits = mag[0] >>> nBits;
|
|
|
+ if (highBits != 0) {
|
|
|
+ newMag = new int[magLen - nInts];
|
|
|
+ newMag[i++] = highBits;
|
|
|
+ } else {
|
|
|
+ newMag = new int[magLen - nInts -1];
|
|
|
+ }
|
|
|
+
|
|
|
+ int nBits2 = 32 - nBits;
|
|
|
+ int j=0;
|
|
|
+ while (j < magLen - nInts - 1)
|
|
|
+ newMag[i++] = (mag[j++] << nBits2) | (mag[j] >>> nBits);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (signum < 0) {
|
|
|
+
|
|
|
+ boolean onesLost = false;
|
|
|
+ for (int i=magLen-1, j=magLen-nInts; i >= j && !onesLost; i--)
|
|
|
+ onesLost = (mag[i] != 0);
|
|
|
+ if (!onesLost && nBits != 0)
|
|
|
+ onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0);
|
|
|
+
|
|
|
+ if (onesLost)
|
|
|
+ newMag = javaIncrement(newMag);
|
|
|
+ }
|
|
|
+
|
|
|
+ return new BigInteger(newMag, signum);
|
|
|
+ }
|
|
|
+
|
|
|
+ int[] javaIncrement(int[] val) {
|
|
|
+ int lastSum = 0;
|
|
|
+ for (int i=val.length-1; i >= 0 && lastSum == 0; i--)
|
|
|
+ lastSum = (val[i] += 1);
|
|
|
+ if (lastSum == 0) {
|
|
|
+ val = new int[val.length+1];
|
|
|
+ val[0] = 1;
|
|
|
+ }
|
|
|
+ return val;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger and(BigInteger val) {
|
|
|
+ int[] result = new int[Math.max(intLength(), val.intLength())];
|
|
|
+ for (int i=0; i < result.length; i++)
|
|
|
+ result[i] = (getInt(result.length-i-1)
|
|
|
+ & val.getInt(result.length-i-1));
|
|
|
+
|
|
|
+ return valueOf(result);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger or(BigInteger val) {
|
|
|
+ int[] result = new int[Math.max(intLength(), val.intLength())];
|
|
|
+ for (int i=0; i < result.length; i++)
|
|
|
+ result[i] = (getInt(result.length-i-1)
|
|
|
+ | val.getInt(result.length-i-1));
|
|
|
+
|
|
|
+ return valueOf(result);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger xor(BigInteger val) {
|
|
|
+ int[] result = new int[Math.max(intLength(), val.intLength())];
|
|
|
+ for (int i=0; i < result.length; i++)
|
|
|
+ result[i] = (getInt(result.length-i-1)
|
|
|
+ ^ val.getInt(result.length-i-1));
|
|
|
+
|
|
|
+ return valueOf(result);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger not() {
|
|
|
+ int[] result = new int[intLength()];
|
|
|
+ for (int i=0; i < result.length; i++)
|
|
|
+ result[i] = ~getInt(result.length-i-1);
|
|
|
+
|
|
|
+ return valueOf(result);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger andNot(BigInteger val) {
|
|
|
+ int[] result = new int[Math.max(intLength(), val.intLength())];
|
|
|
+ for (int i=0; i < result.length; i++)
|
|
|
+ result[i] = (getInt(result.length-i-1)
|
|
|
+ & ~val.getInt(result.length-i-1));
|
|
|
+
|
|
|
+ return valueOf(result);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ boolean testBit(int n) {
|
|
|
+ if (n < 0)
|
|
|
+ throw new ArithmeticException("Negative bit address");
|
|
|
+
|
|
|
+ return (getInt(n >>> 5) & (1 << (n & 31))) != 0;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger setBit(int n) {
|
|
|
+ if (n < 0)
|
|
|
+ throw new ArithmeticException("Negative bit address");
|
|
|
+
|
|
|
+ int intNum = n >>> 5;
|
|
|
+ int[] result = new int[Math.max(intLength(), intNum+2)];
|
|
|
+
|
|
|
+ for (int i=0; i < result.length; i++)
|
|
|
+ result[result.length-i-1] = getInt(i);
|
|
|
+
|
|
|
+ result[result.length-intNum-1] |= (1 << (n & 31));
|
|
|
+
|
|
|
+ return valueOf(result);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger clearBit(int n) {
|
|
|
+ if (n < 0)
|
|
|
+ throw new ArithmeticException("Negative bit address");
|
|
|
+
|
|
|
+ int intNum = n >>> 5;
|
|
|
+ int[] result = new int[Math.max(intLength(), ((n + 1) >>> 5) + 1)];
|
|
|
+
|
|
|
+ for (int i=0; i < result.length; i++)
|
|
|
+ result[result.length-i-1] = getInt(i);
|
|
|
+
|
|
|
+ result[result.length-intNum-1] &= ~(1 << (n & 31));
|
|
|
+
|
|
|
+ return valueOf(result);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger flipBit(int n) {
|
|
|
+ if (n < 0)
|
|
|
+ throw new ArithmeticException("Negative bit address");
|
|
|
+
|
|
|
+ int intNum = n >>> 5;
|
|
|
+ int[] result = new int[Math.max(intLength(), intNum+2)];
|
|
|
+
|
|
|
+ for (int i=0; i < result.length; i++)
|
|
|
+ result[result.length-i-1] = getInt(i);
|
|
|
+
|
|
|
+ result[result.length-intNum-1] ^= (1 << (n & 31));
|
|
|
+
|
|
|
+ return valueOf(result);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ int getLowestSetBit() {
|
|
|
+ @SuppressWarnings("deprecation") int lsb = lowestSetBit - 2;
|
|
|
+ if (lsb == -2) {
|
|
|
+ lsb = 0;
|
|
|
+ if (signum == 0) {
|
|
|
+ lsb -= 1;
|
|
|
+ } else {
|
|
|
+
|
|
|
+ int i,b;
|
|
|
+ for (i=0; (b = getInt(i)) == 0; i++)
|
|
|
+ ;
|
|
|
+ lsb += (i << 5) + Integer.numberOfTrailingZeros(b);
|
|
|
+ }
|
|
|
+ lowestSetBit = lsb + 2;
|
|
|
+ }
|
|
|
+ return lsb;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ int bitLength() {
|
|
|
+ @SuppressWarnings("deprecation") int n = bitLength - 1;
|
|
|
+ if (n == -1) {
|
|
|
+ int[] m = mag;
|
|
|
+ int len = m.length;
|
|
|
+ if (len == 0) {
|
|
|
+ n = 0;
|
|
|
+ } else {
|
|
|
+
|
|
|
+ int magBitLength = ((len - 1) << 5) + bitLengthForInt(mag[0]);
|
|
|
+ if (signum < 0) {
|
|
|
+
|
|
|
+ boolean pow2 = (Integer.bitCount(mag[0]) == 1);
|
|
|
+ for (int i=1; i< len && pow2; i++)
|
|
|
+ pow2 = (mag[i] == 0);
|
|
|
+
|
|
|
+ n = (pow2 ? magBitLength -1 : magBitLength);
|
|
|
+ } else {
|
|
|
+ n = magBitLength;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ bitLength = n + 1;
|
|
|
+ }
|
|
|
+ return n;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ int bitCount() {
|
|
|
+ @SuppressWarnings("deprecation") int bc = bitCount - 1;
|
|
|
+ if (bc == -1) {
|
|
|
+ bc = 0;
|
|
|
+
|
|
|
+ for (int i=0; i < mag.length; i++)
|
|
|
+ bc += Integer.bitCount(mag[i]);
|
|
|
+ if (signum < 0) {
|
|
|
+
|
|
|
+ int magTrailingZeroCount = 0, j;
|
|
|
+ for (j=mag.length-1; mag[j] == 0; j--)
|
|
|
+ magTrailingZeroCount += 32;
|
|
|
+ magTrailingZeroCount += Integer.numberOfTrailingZeros(mag[j]);
|
|
|
+ bc += magTrailingZeroCount - 1;
|
|
|
+ }
|
|
|
+ bitCount = bc + 1;
|
|
|
+ }
|
|
|
+ return bc;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ boolean isProbablePrime(int certainty) {
|
|
|
+ if (certainty <= 0)
|
|
|
+ return true;
|
|
|
+ BigInteger w = this.abs();
|
|
|
+ if (w.equals(TWO))
|
|
|
+ return true;
|
|
|
+ if (!w.testBit(0) || w.equals(ONE))
|
|
|
+ return false;
|
|
|
+
|
|
|
+ return w.primeToCertainty(certainty, null);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ int compareTo(BigInteger val) {
|
|
|
+ if (signum == val.signum) {
|
|
|
+ switch (signum) {
|
|
|
+ case 1:
|
|
|
+ return compareMagnitude(val);
|
|
|
+ case -1:
|
|
|
+ return val.compareMagnitude(this);
|
|
|
+ default:
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return signum > val.signum ? 1 : -1;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ const int compareMagnitude(BigInteger val) {
|
|
|
+ int[] m1 = mag;
|
|
|
+ int len1 = m1.length;
|
|
|
+ int[] m2 = val.mag;
|
|
|
+ int len2 = m2.length;
|
|
|
+ if (len1 < len2)
|
|
|
+ return -1;
|
|
|
+ if (len1 > len2)
|
|
|
+ return 1;
|
|
|
+ for (int i = 0; i < len1; i++) {
|
|
|
+ int a = m1[i];
|
|
|
+ int b = m2[i];
|
|
|
+ if (a != b)
|
|
|
+ return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1;
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ const int compareMagnitude(long val) {
|
|
|
+ assert val != Long.MIN_VALUE;
|
|
|
+ int[] m1 = mag;
|
|
|
+ int len = m1.length;
|
|
|
+ if (len > 2) {
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ if (val < 0) {
|
|
|
+ val = -val;
|
|
|
+ }
|
|
|
+ int highWord = (int)(val >>> 32);
|
|
|
+ if (highWord == 0) {
|
|
|
+ if (len < 1)
|
|
|
+ return -1;
|
|
|
+ if (len > 1)
|
|
|
+ return 1;
|
|
|
+ int a = m1[0];
|
|
|
+ int b = (int)val;
|
|
|
+ if (a != b) {
|
|
|
+ return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+ } else {
|
|
|
+ if (len < 2)
|
|
|
+ return -1;
|
|
|
+ int a = m1[0];
|
|
|
+ int b = highWord;
|
|
|
+ if (a != b) {
|
|
|
+ return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
|
|
|
+ }
|
|
|
+ a = m1[1];
|
|
|
+ b = (int)val;
|
|
|
+ if (a != b) {
|
|
|
+ return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ boolean equals(Object x) {
|
|
|
+
|
|
|
+ if (x == this)
|
|
|
+ return true;
|
|
|
+
|
|
|
+ if (!(x instanceof BigInteger))
|
|
|
+ return false;
|
|
|
+
|
|
|
+ BigInteger xInt = (BigInteger) x;
|
|
|
+ if (xInt.signum != signum)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ int[] m = mag;
|
|
|
+ int len = m.length;
|
|
|
+ int[] xm = xInt.mag;
|
|
|
+ if (len != xm.length)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ for (int i = 0; i < len; i++)
|
|
|
+ if (xm[i] != m[i])
|
|
|
+ return false;
|
|
|
+
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger min(BigInteger val) {
|
|
|
+ return (compareTo(val) < 0 ? this : val);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger max(BigInteger val) {
|
|
|
+ return (compareTo(val) > 0 ? this : val);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ int hashCode() {
|
|
|
+ int hashCode = 0;
|
|
|
+
|
|
|
+ for (int i=0; i < mag.length; i++)
|
|
|
+ hashCode = (int)(31*hashCode + (mag[i] & LONG_MASK));
|
|
|
+
|
|
|
+ return hashCode * signum;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ String toString(int radix) {
|
|
|
+ if (signum == 0)
|
|
|
+ return "0";
|
|
|
+ if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
|
|
|
+ radix = 10;
|
|
|
+
|
|
|
+
|
|
|
+ if (mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD)
|
|
|
+ return smallToString(radix);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ StringBuilder sb = new StringBuilder();
|
|
|
+ if (signum < 0) {
|
|
|
+ toString(this.negate(), sb, radix, 0);
|
|
|
+ sb.insert(0, '-');
|
|
|
+ }
|
|
|
+ else
|
|
|
+ toString(this, sb, radix, 0);
|
|
|
+
|
|
|
+ return sb.toString();
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ String smallToString(int radix) {
|
|
|
+ if (signum == 0) {
|
|
|
+ return "0";
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ int maxNumDigitGroups = (4*mag.length + 6)/7;
|
|
|
+ String digitGroup[] = new String[maxNumDigitGroups];
|
|
|
+
|
|
|
+
|
|
|
+ BigInteger tmp = this.abs();
|
|
|
+ int numGroups = 0;
|
|
|
+ while (tmp.signum != 0) {
|
|
|
+ BigInteger d = longRadix[radix];
|
|
|
+
|
|
|
+ MutableBigInteger q = new MutableBigInteger(),
|
|
|
+ a = new MutableBigInteger(tmp.mag),
|
|
|
+ b = new MutableBigInteger(d.mag);
|
|
|
+ MutableBigInteger r = a.divide(b, q);
|
|
|
+ BigInteger q2 = q.toBigInteger(tmp.signum * d.signum);
|
|
|
+ BigInteger r2 = r.toBigInteger(tmp.signum * d.signum);
|
|
|
+
|
|
|
+ digitGroup[numGroups++] = Long.toString(r2.longValue(), radix);
|
|
|
+ tmp = q2;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ StringBuilder buf = new StringBuilder(numGroups*digitsPerLong[radix]+1);
|
|
|
+ if (signum < 0) {
|
|
|
+ buf.append('-');
|
|
|
+ }
|
|
|
+ buf.append(digitGroup[numGroups-1]);
|
|
|
+
|
|
|
+
|
|
|
+ for (int i=numGroups-2; i >= 0; i--) {
|
|
|
+
|
|
|
+ int numLeadingZeros = digitsPerLong[radix]-digitGroup[i].length();
|
|
|
+ if (numLeadingZeros != 0) {
|
|
|
+ buf.append(zeros[numLeadingZeros]);
|
|
|
+ }
|
|
|
+ buf.append(digitGroup[i]);
|
|
|
+ }
|
|
|
+ return buf.toString();
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static void toString(BigInteger u, StringBuilder sb, int radix,
|
|
|
+ int digits) {
|
|
|
+
|
|
|
+ method, padding with leading zeroes when necessary. */
|
|
|
+ if (u.mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD) {
|
|
|
+ String s = u.smallToString(radix);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ if ((s.length() < digits) && (sb.length() > 0)) {
|
|
|
+ for (int i=s.length(); i < digits; i++) {
|
|
|
+ sb.append('0');
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ sb.append(s);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ int b, n;
|
|
|
+ b = u.bitLength();
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ n = (int) Math.round(Math.log(b * LOG_TWO / logCache[radix]) / LOG_TWO - 1.0);
|
|
|
+ BigInteger v = getRadixConversionCache(radix, n);
|
|
|
+ BigInteger[] results;
|
|
|
+ results = u.divideAndRemainder(v);
|
|
|
+
|
|
|
+ int expectedDigits = 1 << n;
|
|
|
+
|
|
|
+
|
|
|
+ toString(results[0], sb, radix, digits-expectedDigits);
|
|
|
+ toString(results[1], sb, radix, expectedDigits);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static BigInteger getRadixConversionCache(int radix, int exponent) {
|
|
|
+ BigInteger[] cacheLine = powerCache[radix];
|
|
|
+ if (exponent < cacheLine.length) {
|
|
|
+ return cacheLine[exponent];
|
|
|
+ }
|
|
|
+
|
|
|
+ int oldLength = cacheLine.length;
|
|
|
+ cacheLine = Arrays.copyOf(cacheLine, exponent + 1);
|
|
|
+ for (int i = oldLength; i <= exponent; i++) {
|
|
|
+ cacheLine[i] = cacheLine[i - 1].pow(2);
|
|
|
+ }
|
|
|
+
|
|
|
+ BigInteger[][] pc = powerCache;
|
|
|
+ if (exponent >= pc[radix].length) {
|
|
|
+ pc = pc.clone();
|
|
|
+ pc[radix] = cacheLine;
|
|
|
+ powerCache = pc;
|
|
|
+ }
|
|
|
+ return cacheLine[exponent];
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static String zeros[] = new String[64];
|
|
|
+ static {
|
|
|
+ zeros[63] =
|
|
|
+ "000000000000000000000000000000000000000000000000000000000000000";
|
|
|
+ for (int i=0; i < 63; i++)
|
|
|
+ zeros[i] = zeros[63].substring(0, i);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ String toString() {
|
|
|
+ return toString(10);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ byte[] toByteArray() {
|
|
|
+ int byteLen = bitLength()/8 + 1;
|
|
|
+ byte[] byteArray = new byte[byteLen];
|
|
|
+
|
|
|
+ for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i >= 0; i--) {
|
|
|
+ if (bytesCopied == 4) {
|
|
|
+ nextInt = getInt(intIndex++);
|
|
|
+ bytesCopied = 1;
|
|
|
+ } else {
|
|
|
+ nextInt >>>= 8;
|
|
|
+ bytesCopied++;
|
|
|
+ }
|
|
|
+ byteArray[i] = (byte)nextInt;
|
|
|
+ }
|
|
|
+ return byteArray;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ int intValue() {
|
|
|
+ int result = 0;
|
|
|
+ result = getInt(0);
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ long longValue() {
|
|
|
+ long result = 0;
|
|
|
+
|
|
|
+ for (int i=1; i >= 0; i--)
|
|
|
+ result = (result << 32) + (getInt(i) & LONG_MASK);
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ float floatValue() {
|
|
|
+ if (signum == 0) {
|
|
|
+ return 0.0f;
|
|
|
+ }
|
|
|
+
|
|
|
+ int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
|
|
|
+
|
|
|
+
|
|
|
+ if (exponent < Long.SIZE - 1) {
|
|
|
+ return longValue();
|
|
|
+ } else if (exponent > Float.MAX_EXPONENT) {
|
|
|
+ return signum > 0 ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ * We need the top SIGNIFICAND_WIDTH bits, including the "implicit"
|
|
|
+ * one bit. To make rounding easier, we pick out the top
|
|
|
+ * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or
|
|
|
+ * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1
|
|
|
+ * bits, and signifFloor the top SIGNIFICAND_WIDTH.
|
|
|
+ *
|
|
|
+ * It helps to consider the real number signif = abs(this) *
|
|
|
+ * 2^(SIGNIFICAND_WIDTH - 1 - exponent).
|
|
|
+ */
|
|
|
+ int shift = exponent - FloatConsts.SIGNIFICAND_WIDTH;
|
|
|
+
|
|
|
+ int twiceSignifFloor;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ int nBits = shift & 0x1f;
|
|
|
+ int nBits2 = 32 - nBits;
|
|
|
+
|
|
|
+ if (nBits == 0) {
|
|
|
+ twiceSignifFloor = mag[0];
|
|
|
+ } else {
|
|
|
+ twiceSignifFloor = mag[0] >>> nBits;
|
|
|
+ if (twiceSignifFloor == 0) {
|
|
|
+ twiceSignifFloor = (mag[0] << nBits2) | (mag[1] >>> nBits);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ int signifFloor = twiceSignifFloor >> 1;
|
|
|
+ signifFloor &= FloatConsts.SIGNIF_BIT_MASK;
|
|
|
+
|
|
|
+
|
|
|
+ * We round up if either the fractional part of signif is strictly
|
|
|
+ * greater than 0.5 (which is true if the 0.5 bit is set and any lower
|
|
|
+ * bit is set), or if the fractional part of signif is >= 0.5 and
|
|
|
+ * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
|
|
|
+ * are set). This is equivalent to the desired HALF_EVEN rounding.
|
|
|
+ */
|
|
|
+ boolean increment = (twiceSignifFloor & 1) != 0
|
|
|
+ && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
|
|
|
+ int signifRounded = increment ? signifFloor + 1 : signifFloor;
|
|
|
+ int bits = ((exponent + FloatConsts.EXP_BIAS))
|
|
|
+ << (FloatConsts.SIGNIFICAND_WIDTH - 1);
|
|
|
+ bits += signifRounded;
|
|
|
+
|
|
|
+ * If signifRounded == 2^24, we'd need to set all of the significand
|
|
|
+ * bits to zero and add 1 to the exponent. This is exactly the behavior
|
|
|
+ * we get from just adding signifRounded to bits directly. If the
|
|
|
+ * exponent is Float.MAX_EXPONENT, we round up (correctly) to
|
|
|
+ * Float.POSITIVE_INFINITY.
|
|
|
+ */
|
|
|
+ bits |= signum & FloatConsts.SIGN_BIT_MASK;
|
|
|
+ return Float.intBitsToFloat(bits);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ double doubleValue() {
|
|
|
+ if (signum == 0) {
|
|
|
+ return 0.0;
|
|
|
+ }
|
|
|
+
|
|
|
+ int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
|
|
|
+
|
|
|
+
|
|
|
+ if (exponent < Long.SIZE - 1) {
|
|
|
+ return longValue();
|
|
|
+ } else if (exponent > Double.MAX_EXPONENT) {
|
|
|
+ return signum > 0 ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ * We need the top SIGNIFICAND_WIDTH bits, including the "implicit"
|
|
|
+ * one bit. To make rounding easier, we pick out the top
|
|
|
+ * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or
|
|
|
+ * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1
|
|
|
+ * bits, and signifFloor the top SIGNIFICAND_WIDTH.
|
|
|
+ *
|
|
|
+ * It helps to consider the real number signif = abs(this) *
|
|
|
+ * 2^(SIGNIFICAND_WIDTH - 1 - exponent).
|
|
|
+ */
|
|
|
+ int shift = exponent - DoubleConsts.SIGNIFICAND_WIDTH;
|
|
|
+
|
|
|
+ long twiceSignifFloor;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ int nBits = shift & 0x1f;
|
|
|
+ int nBits2 = 32 - nBits;
|
|
|
+
|
|
|
+ int highBits;
|
|
|
+ int lowBits;
|
|
|
+ if (nBits == 0) {
|
|
|
+ highBits = mag[0];
|
|
|
+ lowBits = mag[1];
|
|
|
+ } else {
|
|
|
+ highBits = mag[0] >>> nBits;
|
|
|
+ lowBits = (mag[0] << nBits2) | (mag[1] >>> nBits);
|
|
|
+ if (highBits == 0) {
|
|
|
+ highBits = lowBits;
|
|
|
+ lowBits = (mag[1] << nBits2) | (mag[2] >>> nBits);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ twiceSignifFloor = ((highBits & LONG_MASK) << 32)
|
|
|
+ | (lowBits & LONG_MASK);
|
|
|
+
|
|
|
+ long signifFloor = twiceSignifFloor >> 1;
|
|
|
+ signifFloor &= DoubleConsts.SIGNIF_BIT_MASK;
|
|
|
+
|
|
|
+
|
|
|
+ * We round up if either the fractional part of signif is strictly
|
|
|
+ * greater than 0.5 (which is true if the 0.5 bit is set and any lower
|
|
|
+ * bit is set), or if the fractional part of signif is >= 0.5 and
|
|
|
+ * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
|
|
|
+ * are set). This is equivalent to the desired HALF_EVEN rounding.
|
|
|
+ */
|
|
|
+ boolean increment = (twiceSignifFloor & 1) != 0
|
|
|
+ && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
|
|
|
+ long signifRounded = increment ? signifFloor + 1 : signifFloor;
|
|
|
+ long bits = (long) ((exponent + DoubleConsts.EXP_BIAS))
|
|
|
+ << (DoubleConsts.SIGNIFICAND_WIDTH - 1);
|
|
|
+ bits += signifRounded;
|
|
|
+
|
|
|
+ * If signifRounded == 2^53, we'd need to set all of the significand
|
|
|
+ * bits to zero and add 1 to the exponent. This is exactly the behavior
|
|
|
+ * we get from just adding signifRounded to bits directly. If the
|
|
|
+ * exponent is Double.MAX_EXPONENT, we round up (correctly) to
|
|
|
+ * Double.POSITIVE_INFINITY.
|
|
|
+ */
|
|
|
+ bits |= signum & DoubleConsts.SIGN_BIT_MASK;
|
|
|
+ return Double.longBitsToDouble(bits);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int[] stripLeadingZeroInts(int val[]) {
|
|
|
+ int vlen = val.length;
|
|
|
+ int keep;
|
|
|
+
|
|
|
+
|
|
|
+ for (keep = 0; keep < vlen && val[keep] == 0; keep++)
|
|
|
+ ;
|
|
|
+ return java.util.Arrays.copyOfRange(val, keep, vlen);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int[] trustedStripLeadingZeroInts(int val[]) {
|
|
|
+ int vlen = val.length;
|
|
|
+ int keep;
|
|
|
+
|
|
|
+
|
|
|
+ for (keep = 0; keep < vlen && val[keep] == 0; keep++)
|
|
|
+ ;
|
|
|
+ return keep == 0 ? val : java.util.Arrays.copyOfRange(val, keep, vlen);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int[] stripLeadingZeroBytes(byte a[]) {
|
|
|
+ int byteLength = a.length;
|
|
|
+ int keep;
|
|
|
+
|
|
|
+
|
|
|
+ for (keep = 0; keep < byteLength && a[keep] == 0; keep++)
|
|
|
+ ;
|
|
|
+
|
|
|
+
|
|
|
+ int intLength = ((byteLength - keep) + 3) >>> 2;
|
|
|
+ int[] result = new int[intLength];
|
|
|
+ int b = byteLength - 1;
|
|
|
+ for (int i = intLength-1; i >= 0; i--) {
|
|
|
+ result[i] = a[b--] & 0xff;
|
|
|
+ int bytesRemaining = b - keep + 1;
|
|
|
+ int bytesToTransfer = Math.min(3, bytesRemaining);
|
|
|
+ for (int j=8; j <= (bytesToTransfer << 3); j += 8)
|
|
|
+ result[i] |= ((a[b--] & 0xff) << j);
|
|
|
+ }
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int[] makePositive(byte a[]) {
|
|
|
+ int keep, k;
|
|
|
+ int byteLength = a.length;
|
|
|
+
|
|
|
+
|
|
|
+ for (keep=0; keep < byteLength && a[keep] == -1; keep++)
|
|
|
+ ;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ * allocate space for one extra output byte. */
|
|
|
+ for (k=keep; k < byteLength && a[k] == 0; k++)
|
|
|
+ ;
|
|
|
+
|
|
|
+ int extraByte = (k == byteLength) ? 1 : 0;
|
|
|
+ int intLength = ((byteLength - keep + extraByte) + 3) >>> 2;
|
|
|
+ int result[] = new int[intLength];
|
|
|
+
|
|
|
+
|
|
|
+ * byte (if it exists) == 0x00 */
|
|
|
+ int b = byteLength - 1;
|
|
|
+ for (int i = intLength-1; i >= 0; i--) {
|
|
|
+ result[i] = a[b--] & 0xff;
|
|
|
+ int numBytesToTransfer = Math.min(3, b-keep+1);
|
|
|
+ if (numBytesToTransfer < 0)
|
|
|
+ numBytesToTransfer = 0;
|
|
|
+ for (int j=8; j <= 8*numBytesToTransfer; j += 8)
|
|
|
+ result[i] |= ((a[b--] & 0xff) << j);
|
|
|
+
|
|
|
+
|
|
|
+ int mask = -1 >>> (8*(3-numBytesToTransfer));
|
|
|
+ result[i] = ~result[i] & mask;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ for (int i=result.length-1; i >= 0; i--) {
|
|
|
+ result[i] = (int)((result[i] & LONG_MASK) + 1);
|
|
|
+ if (result[i] != 0)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static int[] makePositive(int a[]) {
|
|
|
+ int keep, j;
|
|
|
+
|
|
|
+
|
|
|
+ for (keep=0; keep < a.length && a[keep] == -1; keep++)
|
|
|
+ ;
|
|
|
+
|
|
|
+
|
|
|
+ * allocate space for one extra output int. */
|
|
|
+ for (j=keep; j < a.length && a[j] == 0; j++)
|
|
|
+ ;
|
|
|
+ int extraInt = (j == a.length ? 1 : 0);
|
|
|
+ int result[] = new int[a.length - keep + extraInt];
|
|
|
+
|
|
|
+
|
|
|
+ * int (if it exists) == 0x00 */
|
|
|
+ for (int i = keep; i < a.length; i++)
|
|
|
+ result[i - keep + extraInt] = ~a[i];
|
|
|
+
|
|
|
+
|
|
|
+ for (int i=result.length-1; ++result[i] == 0; i--)
|
|
|
+ ;
|
|
|
+
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ * The following two arrays are used for fast String conversions. Both
|
|
|
+ * are indexed by radix. The first is the number of digits of the given
|
|
|
+ * radix that can fit in a Java long without "going negative", i.e., the
|
|
|
+ * highest integer n such that radix**n < 2**63. The second is the
|
|
|
+ * "long radix" that tears each number into "long digits", each of which
|
|
|
+ * consists of the number of digits in the corresponding element in
|
|
|
+ * digitsPerLong (longRadix[i] = i**digitPerLong[i]). Both arrays have
|
|
|
+ * nonsense values in their 0 and 1 elements, as radixes 0 and 1 are not
|
|
|
+ * used.
|
|
|
+ */
|
|
|
+ static int digitsPerLong[] = {0, 0,
|
|
|
+ 62, 39, 31, 27, 24, 22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14,
|
|
|
+ 14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12};
|
|
|
+
|
|
|
+ static BigInteger longRadix[] = {null, null,
|
|
|
+ valueOf(0x4000000000000000L), valueOf(0x383d9170b85ff80bL),
|
|
|
+ valueOf(0x4000000000000000L), valueOf(0x6765c793fa10079dL),
|
|
|
+ valueOf(0x41c21cb8e1000000L), valueOf(0x3642798750226111L),
|
|
|
+ valueOf(0x1000000000000000L), valueOf(0x12bf307ae81ffd59L),
|
|
|
+ valueOf( 0xde0b6b3a7640000L), valueOf(0x4d28cb56c33fa539L),
|
|
|
+ valueOf(0x1eca170c00000000L), valueOf(0x780c7372621bd74dL),
|
|
|
+ valueOf(0x1e39a5057d810000L), valueOf(0x5b27ac993df97701L),
|
|
|
+ valueOf(0x1000000000000000L), valueOf(0x27b95e997e21d9f1L),
|
|
|
+ valueOf(0x5da0e1e53c5c8000L), valueOf( 0xb16a458ef403f19L),
|
|
|
+ valueOf(0x16bcc41e90000000L), valueOf(0x2d04b7fdd9c0ef49L),
|
|
|
+ valueOf(0x5658597bcaa24000L), valueOf( 0x6feb266931a75b7L),
|
|
|
+ valueOf( 0xc29e98000000000L), valueOf(0x14adf4b7320334b9L),
|
|
|
+ valueOf(0x226ed36478bfa000L), valueOf(0x383d9170b85ff80bL),
|
|
|
+ valueOf(0x5a3c23e39c000000L), valueOf( 0x4e900abb53e6b71L),
|
|
|
+ valueOf( 0x7600ec618141000L), valueOf( 0xaee5720ee830681L),
|
|
|
+ valueOf(0x1000000000000000L), valueOf(0x172588ad4f5f0981L),
|
|
|
+ valueOf(0x211e44f7d02c1000L), valueOf(0x2ee56725f06e5c71L),
|
|
|
+ valueOf(0x41c21cb8e1000000L)};
|
|
|
+
|
|
|
+
|
|
|
+ * These two arrays are the integer analogue of above.
|
|
|
+ */
|
|
|
+ static int digitsPerInt[] = {0, 0, 30, 19, 15, 13, 11,
|
|
|
+ 11, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6,
|
|
|
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5};
|
|
|
+
|
|
|
+ static int intRadix[] = {0, 0,
|
|
|
+ 0x40000000, 0x4546b3db, 0x40000000, 0x48c27395, 0x159fd800,
|
|
|
+ 0x75db9c97, 0x40000000, 0x17179149, 0x3b9aca00, 0xcc6db61,
|
|
|
+ 0x19a10000, 0x309f1021, 0x57f6c100, 0xa2f1b6f, 0x10000000,
|
|
|
+ 0x18754571, 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d,
|
|
|
+ 0x6c20a40, 0x8d2d931, 0xb640000, 0xe8d4a51, 0x1269ae40,
|
|
|
+ 0x17179149, 0x1cb91000, 0x23744899, 0x2b73a840, 0x34e63b41,
|
|
|
+ 0x40000000, 0x4cfa3cc1, 0x5c13d840, 0x6d91b519, 0x39aa400
|
|
|
+ };
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ int intLength() {
|
|
|
+ return (bitLength() >>> 5) + 1;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ int signBit() {
|
|
|
+ return signum < 0 ? 1 : 0;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ int signInt() {
|
|
|
+ return signum < 0 ? -1 : 0;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ int getInt(int n) {
|
|
|
+ if (n < 0)
|
|
|
+ return 0;
|
|
|
+ if (n >= mag.length)
|
|
|
+ return signInt();
|
|
|
+
|
|
|
+ int magInt = mag[mag.length-n-1];
|
|
|
+
|
|
|
+ return (signum >= 0 ? magInt :
|
|
|
+ (n <= firstNonzeroIntNum() ? -magInt : ~magInt));
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ int firstNonzeroIntNum() {
|
|
|
+ int fn = firstNonzeroIntNum - 2;
|
|
|
+ if (fn == -2) {
|
|
|
+ fn = 0;
|
|
|
+
|
|
|
+
|
|
|
+ int i;
|
|
|
+ int mlen = mag.length;
|
|
|
+ for (i = mlen - 1; i >= 0 && mag[i] == 0; i--)
|
|
|
+ ;
|
|
|
+ fn = mlen - i - 1;
|
|
|
+ firstNonzeroIntNum = fn + 2;
|
|
|
+ }
|
|
|
+ return fn;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static const long serialVersionUID = -8287574255936472291L;
|
|
|
+
|
|
|
+
|
|
|
+ static const ObjectStreamField[] serialPersistentFields = {
|
|
|
+ new ObjectStreamField("signum", Integer.TYPE),
|
|
|
+ new ObjectStreamField("magnitude", byte[].class),
|
|
|
+ new ObjectStreamField("bitCount", Integer.TYPE),
|
|
|
+ new ObjectStreamField("bitLength", Integer.TYPE),
|
|
|
+ new ObjectStreamField("firstNonzeroByteNum", Integer.TYPE),
|
|
|
+ new ObjectStreamField("lowestSetBit", Integer.TYPE)
|
|
|
+ };
|
|
|
+
|
|
|
+
|
|
|
+ void readObject(java.io.ObjectInputStream s)
|
|
|
+ throws java.io.IOException, ClassNotFoundException {
|
|
|
+
|
|
|
+ * In order to maintain compatibility with previous serialized forms,
|
|
|
+ * the magnitude of a BigInteger is serialized as an array of bytes.
|
|
|
+ * The magnitude field is used as a temporary store for the byte array
|
|
|
+ * that is deserialized. The cached computation fields should be
|
|
|
+ * transient but are serialized for compatibility reasons.
|
|
|
+ */
|
|
|
+
|
|
|
+
|
|
|
+ ObjectInputStream.GetField fields = s.readFields();
|
|
|
+
|
|
|
+
|
|
|
+ int sign = fields.get("signum", -2);
|
|
|
+ byte[] magnitude = (byte[])fields.get("magnitude", null);
|
|
|
+
|
|
|
+
|
|
|
+ if (sign < -1 || sign > 1) {
|
|
|
+ String message = "BigInteger: Invalid signum value";
|
|
|
+ if (fields.defaulted("signum"))
|
|
|
+ message = "BigInteger: Signum not present in stream";
|
|
|
+ throw new java.io.StreamCorruptedException(message);
|
|
|
+ }
|
|
|
+ int[] mag = stripLeadingZeroBytes(magnitude);
|
|
|
+ if ((mag.length == 0) != (sign == 0)) {
|
|
|
+ String message = "BigInteger: signum-magnitude mismatch";
|
|
|
+ if (fields.defaulted("magnitude"))
|
|
|
+ message = "BigInteger: Magnitude not present in stream";
|
|
|
+ throw new java.io.StreamCorruptedException(message);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ UnsafeHolder.putSign(this, sign);
|
|
|
+
|
|
|
+
|
|
|
+ UnsafeHolder.putMag(this, mag);
|
|
|
+ if (mag.length >= MAX_MAG_LENGTH) {
|
|
|
+ try {
|
|
|
+ checkRange();
|
|
|
+ } catch (ArithmeticException e) {
|
|
|
+ throw new java.io.StreamCorruptedException("BigInteger: Out of the supported range");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ static class UnsafeHolder {
|
|
|
+ static const sun.misc.Unsafe unsafe;
|
|
|
+ static const long signumOffset;
|
|
|
+ static const long magOffset;
|
|
|
+ static {
|
|
|
+ try {
|
|
|
+ unsafe = sun.misc.Unsafe.getUnsafe();
|
|
|
+ signumOffset = unsafe.objectFieldOffset
|
|
|
+ (BigInteger.class.getDeclaredField("signum"));
|
|
|
+ magOffset = unsafe.objectFieldOffset
|
|
|
+ (BigInteger.class.getDeclaredField("mag"));
|
|
|
+ } catch (Exception ex) {
|
|
|
+ throw new ExceptionInInitializerError(ex);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ static void putSign(BigInteger bi, int sign) {
|
|
|
+ unsafe.putIntVolatile(bi, signumOffset, sign);
|
|
|
+ }
|
|
|
+
|
|
|
+ static void putMag(BigInteger bi, int[] magnitude) {
|
|
|
+ unsafe.putObjectVolatile(bi, magOffset, magnitude);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ void writeObject(ObjectOutputStream s) throws IOException {
|
|
|
+
|
|
|
+ ObjectOutputStream.PutField fields = s.putFields();
|
|
|
+ fields.put("signum", signum);
|
|
|
+ fields.put("magnitude", magSerializedForm());
|
|
|
+
|
|
|
+
|
|
|
+ fields.put("bitCount", -1);
|
|
|
+ fields.put("bitLength", -1);
|
|
|
+ fields.put("lowestSetBit", -2);
|
|
|
+ fields.put("firstNonzeroByteNum", -2);
|
|
|
+
|
|
|
+
|
|
|
+ s.writeFields();
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+ byte[] magSerializedForm() {
|
|
|
+ int len = mag.length;
|
|
|
+
|
|
|
+ int bitLen = (len == 0 ? 0 : ((len - 1) << 5) + bitLengthForInt(mag[0]));
|
|
|
+ int byteLen = (bitLen + 7) >>> 3;
|
|
|
+ byte[] result = new byte[byteLen];
|
|
|
+
|
|
|
+ for (int i = byteLen - 1, bytesCopied = 4, intIndex = len - 1, nextInt = 0;
|
|
|
+ i >= 0; i--) {
|
|
|
+ if (bytesCopied == 4) {
|
|
|
+ nextInt = mag[intIndex--];
|
|
|
+ bytesCopied = 1;
|
|
|
+ } else {
|
|
|
+ nextInt >>>= 8;
|
|
|
+ bytesCopied++;
|
|
|
+ }
|
|
|
+ result[i] = (byte)nextInt;
|
|
|
+ }
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ long longValueExact() {
|
|
|
+ if (mag.length <= 2 && bitLength() <= 63)
|
|
|
+ return longValue();
|
|
|
+ else
|
|
|
+ throw new ArithmeticException("BigInteger out of long range");
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ int intValueExact() {
|
|
|
+ if (mag.length <= 1 && bitLength() <= 31)
|
|
|
+ return intValue();
|
|
|
+ else
|
|
|
+ throw new ArithmeticException("BigInteger out of int range");
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ short shortValueExact() {
|
|
|
+ if (mag.length <= 1 && bitLength() <= 31) {
|
|
|
+ int value = intValue();
|
|
|
+ if (value >= Short.MIN_VALUE && value <= Short.MAX_VALUE)
|
|
|
+ return shortValue();
|
|
|
+ }
|
|
|
+ throw new ArithmeticException("BigInteger out of short range");
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ byte byteValueExact() {
|
|
|
+ if (mag.length <= 1 && bitLength() <= 31) {
|
|
|
+ int value = intValue();
|
|
|
+ if (value >= Byte.MIN_VALUE && value <= Byte.MAX_VALUE)
|
|
|
+ return byteValue();
|
|
|
+ }
|
|
|
+ throw new ArithmeticException("BigInteger out of byte range");
|
|
|
+ }
|
|
|
+ static void main(String[] args) {
|
|
|
+ BigInteger a = new BigInteger(6);
|
|
|
+ a = a.pow(100);
|
|
|
+ System.out.println(a);
|
|
|
+ }
|
|
|
+}
|